LC-MS/MS for the quantification of Peptide biomarker and mixture of closely related Protein in formulation

Luc-Alain SAVOY
Part I: SGS overview

Part II: Peptides in biological matrices

Peptides analysis by mass spectrometry
 - Biomarker peptides (Angiotensins)
 - Therapeutic peptides

Part III: Protein in formulations

Chorionic gonadotropin (CG) proteins
WHAT WE DO

DELiver
- Analytical Development
- Biologics
 - Characterization
 - Potency, Efficacy, Biosafety
- Quality Control
- Clinical Research for Phase I to IV Trials

ENSURE
- Quality, Safety and Effectiveness of Bio/pharmaceutical
- « High value for money » services
- Reduction time-to-market
LIFE SCIENCE SERVICES OVERVIEW

- Over 35 years experience - 1,500 full time employees with 28 facilities in 15 countries

- Global drug development partner from Molecule to Market with unique international analytical laboratory network
 - across America, Europe, Asia with Centers of Excellence matching Biopharmaceutical and Small molecules needs

- Expert biopharma analytical services
 - Research, QC, regulatory
 - Scientific consultancy
 - Biosimilars
 - Comparability
 - Bioanalysis & bioassays
 - Proteomics, glycomics
 - Extracables & leachables
 - Virus detection and identification
 - Molecular biology assays – q-PCR
 - Product analysis
 - Glycoproteins, proteins & peptides
 - Antibodies & vaccines
 - Gene & cell therapies
 - Oligonucleotides & polysaccharides
 - Small molecules & antibiotics

- Strong commitment to clinical and laboratory Quality and Operational Excellence in many areas
 - Harmonized QMS and Validation & Transfer methods, LIMS, Lean
ADVANTAGES OF LC-MS/MS

- Better selectivity between structurally or chemically similar peptides
- Better precision and accuracy
- Antibodies not required
- Low sensitivity (pg/mL)
CONTENT

- Part I: SGS overview
- Part II: Peptides in biological matrices
 - Peptides analysis by mass spectrometry
 - Biomarker peptides (Angiotensins)
 - Therapeutic peptides
- Part III: Protein in formulations
 - Chorionic gonadotropin (CG) proteins
Stable isotope labeled peptides are used as Internal Standards (IS) to correct variabilities during the entire bioanalytical process (extraction, dilution, adsorption, evaporation, degradation...).

Amino Acid Sequences of Angiotensin Peptides

<table>
<thead>
<tr>
<th></th>
<th>Sequences</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiotensin I</td>
<td>Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu</td>
<td>1296.5</td>
</tr>
<tr>
<td>Angiotensin II</td>
<td>Asp-Arg-Val-Tyr-Ile-His-Pro-Phe</td>
<td>1046.2</td>
</tr>
<tr>
<td>Angiotensin III</td>
<td>Arg-Val-Tyr-Ile-His-Pro-Phe</td>
<td>931.1</td>
</tr>
<tr>
<td>Angiotensin IV</td>
<td>Val-Tyr-Ile-His-Pro-Phe</td>
<td>774.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Internal Standard</th>
<th>Sequences</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiotensin I</td>
<td>Asp-Arg-Val-Tyr-Ile*-His-Pro-Phe-His-Leu</td>
<td>1303.5</td>
</tr>
<tr>
<td>Angiotensin II</td>
<td>Asp-Arg-Val-Tyr-Ile*-His-Pro-Phe</td>
<td>1053.2</td>
</tr>
<tr>
<td>Angiotensin III</td>
<td>Arg-Val-Tyr-Ile*-His-Pro-Phe</td>
<td>938.1</td>
</tr>
<tr>
<td>Angiotensin IV</td>
<td>Val-Tyr-Ile*-His-Pro-Phe</td>
<td>781.9</td>
</tr>
</tbody>
</table>

[Ile* = I(13C6,15N)]
POSITIVE ESI MASS SPECTRUM OF ANGIOTENSIN II (Precusor ion)

Sol 2 μg/mL débit 5 μL/min avec 0.4 mL/min MeOH/H2O (40/60) + 0.5 % HCOOH
ANGIOTENSIN II MS:001 1 (0.367) 523.39

[M+2H]^{2+}

MH^+
POSITIVE ESI MASS SPECTRUM ANGIOTENSIN II (PRODUCT IONS)

MRM transition 524 → 263

[M+2H]^{2+}
MASS SPECTROMETER SETTINGS FOR ANGIOTENSIN MRM TRANSITIONS

<table>
<thead>
<tr>
<th>Angiotensin</th>
<th>Pecursor ion (m/z)</th>
<th>Product ion (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiotensin I</td>
<td>433.2 (3+)</td>
<td>110,1</td>
</tr>
<tr>
<td>Angiotensin I (IS)</td>
<td>435.4 (3+)</td>
<td>110,1</td>
</tr>
<tr>
<td>Angiotensin II</td>
<td>523.8 (2+)</td>
<td>263,1</td>
</tr>
<tr>
<td>Angiotensin II (IS)</td>
<td>527.4 (2+)</td>
<td>263,1</td>
</tr>
<tr>
<td>Angiotensin III</td>
<td>466.4 (2+)</td>
<td>263,1</td>
</tr>
<tr>
<td>Angiotensin III (IS)</td>
<td>469.9 (2+)</td>
<td>263,1</td>
</tr>
<tr>
<td>Angiotensin IV</td>
<td>388.4 (2+)</td>
<td>235,1</td>
</tr>
<tr>
<td>Angiotensin IV (IS)</td>
<td>391.8 (2+)</td>
<td>235,1</td>
</tr>
</tbody>
</table>

The selection of specific MRM transitions results in a highly sensitive and selective detection of the peptides.

MRM: Multiple Reaction Monitoring
UPLC-MS/MS CONDITIONS

- Column: Acquity (Waters)
 - Length: 100 mm
 - Internal diameter: 2.1 mm
 - Particle size: 1.7 µm
- Flow rate: 0.5 mL/min
- Mobile phase
 - A: H₂O (+ formic acid)
 - B: MeOH (+ formic acid)
- Gradient table:

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>%A</th>
<th>%B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>2,9</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>3,4</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>3,5</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>
LC-MS/MS CHROMATOGRAM FOR ANGIOTENSINS IN SOLUTION

Sol 250 pg/mL angiotensin I, II, III, IV et 1-7
Essai 310111-019

Angiotensin II
Angiotensin I
Angiotensin III
Angiotensin IV
Angiotensin 1-7

MRM of 5 Channels ES+
TIC
1.57e6
LC-MS/MS CHROMATOGRAM FOR ANGIOTENSINS IN HUMAN PLASMA

Plasma humain

Essai 310111-027 Sm (Mn, 2x3)

MRM of 5 Channels ES+
433.15 > 110.1 (Angiotensin I)
2.95e5
Area

Angiotensin I

Essai 310111-027 Sm (Mn, 2x3)

MRM of 5 Channels ES+
524 > 263.2 (Angiotensin II)
1.41e5
Area

Angiotensin II

Essai 310111-027

MRM of 5 Channels ES+
466.37 > 263.15 (Angiotensin III)
2.21e5

Angiotensin III

Essai 310111-027

MRM of 5 Channels ES+
388.43 > 235.15 (Angiotensin IV)
1.45e4

Angiotensin IV
Calibration Curves for Angiotensins I & II

Angiotensin I
2 to 2000 pg/mL

Angiotensin II
2 to 2000 pg/mL

Compound name: Angiotensin II
Correlation coefficient: $r = 0.997474$, $r^2 = 0.994955$
Calibration curve: $0.0130392 \times x + 0.00329752$
Response type: Internal Std (Ref 3), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x^2, Axis trans: None

Compound name: Angiotensin I
Correlation coefficient: $r = 0.998615$, $r^2 = 0.997232$
Calibration curve: $0.0127264 \times x + 0.017328$
Response type: Internal Std (Ref 1), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x^2, Axis trans: None
INTRA-RUN ASSAY PERFORMANCE AT THE LLOQ (2 pg/mL)

<table>
<thead>
<tr>
<th>Replicate analysis of QC samples spiked at the LLOQ</th>
<th>Angiotensin I 2pg/mL</th>
<th>Angiotensin II 2pg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.03</td>
<td>2.27</td>
</tr>
<tr>
<td></td>
<td>1.79</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td>2.55</td>
<td>1.57</td>
</tr>
<tr>
<td></td>
<td>1.61</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td>2.32</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td>1.81</td>
<td>2.19</td>
</tr>
<tr>
<td>Mean Concentration (pg/mL)</td>
<td>2.02</td>
<td>2.03</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.36</td>
<td>0.25</td>
</tr>
<tr>
<td>Precision (%CV)</td>
<td>17.7</td>
<td>12.3</td>
</tr>
<tr>
<td>Accuracy (Bias %)</td>
<td>0.9</td>
<td>1.5</td>
</tr>
<tr>
<td>n</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Precision and accuracy acceptance criteria are within ±20 % at LLOQ
CONTENT

■ Part I: SGS overview

■ Part II: Peptides in biological matrices
 - Peptides analysis by mass spectrometry
 - Biomarker peptides (Angiotensins)
 - Therapeutic peptides

■ Part II: Protein in formulations
 - Chorionic gonadotropin (CG) proteins
TRIPTORELIN

- Triptorelin is a decapeptide (MW 1311.5 Da).
- Triptorelin is an agonist of gonadotropin releasing hormone.
- Treatment of prostate or breast cancer.
- New clinical phase III study with LLOQ 10pg/mL.
- Sequence:

 PyroGlu-His-Trp-Ser-Tyr-(D)Trp-Leu-Arg-Pro-Gly-NH₂
A stable isotope labelled internal standard was used

<table>
<thead>
<tr>
<th></th>
<th>Sequence</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triptorelin</td>
<td>PGlu-His-Trp-Ser-Tyr-D-Trp-Leu-Arg-Pro-Gly-NH₂</td>
<td>1311.5</td>
</tr>
<tr>
<td>Triptorelin (U-^{13}C⁵,^{15}N)</td>
<td>PGlu-His-Trp-Ser-Tyr-D-Trp-Leu-Arg-*Pro-Gly-NH₂</td>
<td>1317.5</td>
</tr>
</tbody>
</table>

[*Pro= I(^{13}C⁵,^{15}N)]

Assay volume: 100 µL of human serum

Runtime: 4 minutes.
LC-MS/MS CHROMATOGRAM OF A BLANK HUMAN SERUM AND OF A 50.0 pg/mL QC

50.0 pg/mL (100 µL of serum)
IS labeled Pro (13C$_5$, 15N)
<table>
<thead>
<tr>
<th></th>
<th>Precision (%CV)</th>
<th>50.0 pg/mL</th>
<th>150 pg/mL</th>
<th>1500 pg/mL</th>
<th>3500 pg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-run 1</td>
<td>Precision (%CV)</td>
<td>5.53</td>
<td>2.98</td>
<td>1.88</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>Accuracy (Bias %)</td>
<td>2.80</td>
<td>-4.67</td>
<td>2.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Intra-run 2</td>
<td>Precision (%CV)</td>
<td>4.29</td>
<td>2.31</td>
<td>0.54</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td>Accuracy (Bias %)</td>
<td>-4.00</td>
<td>-7.33</td>
<td>-6.67</td>
<td>-8.86</td>
</tr>
<tr>
<td>Intra-run 3</td>
<td>Precision (%CV)</td>
<td>2.13</td>
<td>1.60</td>
<td>0.66</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>Accuracy (Bias %)</td>
<td>5.40</td>
<td>0.67</td>
<td>0.00</td>
<td>-2.29</td>
</tr>
<tr>
<td>Inter-run</td>
<td>Precision (%CV)</td>
<td>5.62</td>
<td>4.15</td>
<td>3.89</td>
<td>4.18</td>
</tr>
<tr>
<td></td>
<td>Accuracy (Bias %)</td>
<td>1.40</td>
<td>-3.33</td>
<td>-1.33</td>
<td>3.71</td>
</tr>
</tbody>
</table>

Precision and accuracy acceptance criteria are within ±15 %
CONTENT

- Part I: SGS overview
- Part II: Peptides in biological matrices
 - Peptides analysis by mass spectrometry
 - Biomarker peptides (Angiotensins)
 - Therapeutic peptides
- Part III: Protein in formulations
 - Chorionic gonadotropin (CG) hormone proteins
DOSAGE OF PROTEINS IN FORMULATIONS – CASE STUDY

- Sample: A mixture of closely related proteins (human CG, equine CG)
- Aim: Each variant needs to be quantified individually
- Preparation of experimental procedures: In silico search for specific signature peptide(s) produced by defined proteolysis (enzyme/chemical)
DOSAGE OF PROTEINS IN FORMULATIONS – CASE STUDY

- Sample process: Test of the selected proteolytic procedure on the complex sample
- Synthesis of cold labeled signature peptides
- Establishment of calibration curves
DOSAGE OF PROTEINS IN FORMULATIONS – CASE STUDY

- Signature peptides
 - Horse CG:RFASIRLPGPC......
 - Human CG:RFESIRLPGPC......

- Signature peptides and IS
 - Peptide 1: Mw 592.3, Peptide 1 IS: Mw 598.3 (Phe13C$_6$)
 - Peptide 2: Mw 650.3, Peptide 2 IS: Mw 656.3 (Phe13C$_6$)

- Transitions:
 - Peptide 1: 592.3 > 278.2
 - Peptide 1 IS: 598.3 > 284.2
DOSAGE OF PROTEINS IN FORMULATIONS – CASE STUDY

- UPLC-MS analysis of processed standard sample spiked with IS

 Peptide 1 IS

 Peptide 1

 Peptide 2 IS

 Peptide 2
DOSAGE OF PROTEINS IN FORMULATIONS – CASE STUDY

- Representative results

<table>
<thead>
<tr>
<th>BATCH No.:</th>
<th>Ratio eCG : hCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.0 : 1</td>
</tr>
<tr>
<td>2</td>
<td>8.3 : 1</td>
</tr>
<tr>
<td>3</td>
<td>8.2 : 1</td>
</tr>
<tr>
<td>4</td>
<td>5.3 : 1</td>
</tr>
<tr>
<td>5</td>
<td>7.9 : 1</td>
</tr>
</tbody>
</table>
CONCLUSION

- Detailed characterisation of your protein is essential as you will have to make sure that your quantitation assay is targeting:
 - A common feature of all variants if you want total amount (e.g. MAB PK studies).
 - A unique feature of each variant if you want relative amount.
THANK YOU FOR YOUR ATTENTION
QUESTIONS ?