The Q Exactive – A Benchtop Orbitrap Mass Spectrometer for DMPK

Presented to:
5th EBF Open Meeting, Barcelona.

Simon Szwandt Ph.D.
Market Development Manager– Pharma & CRO
Agenda

- Triple vs HR/AM
- Instrumentation and HR/AM
- Q Exactive Bioanalytical Data – Small Molecule and Biologics
- Hepcidin Quantitation
The Exactive Family

- The Exactive Plus
 - HCD cell optional
 - Upgradeable to Q Exactive
 - Mass range to m/z 6000
 - Faster polarity switching
 - Rotated flatapole
 - New scan modes

- The Q Exactive
 - Resolving power >140,000
 - Parent ion selection capability
 - Spectral multiplexing
 - UHPLC and nanoflow capable

Superior selectivity & specificity due to HR/AM-MS and MS/MS
Why HR/AM in Bioanalysis?
Full Scan – The Most Information

Triple Quadrupole

Q Exactive

NL: 2.08E4
m/z = 329.58-330.58 F: FTMS + p ESI Full ms
[150.00-400.00] MS Paroxetine-FS-002

NL: 3.05E6
m/z = 330.14835-330.15165 F: FTMS + p ESI Full ms [150.00-400.00] MS Paroxetine-QE-FS-03
SIM – The Highest Possible Signal

Triple Quadrupole

Q Exactive
MSMS (SRM Vs. MSMS)

Triple Quadrupole

Q Exactive

[Graph showing comparison between Triple Quadrupole and Q Exactive]

[Thermo Fisher Scientific logo]
Specificity = Resolution + Mass Accuracy

Resolution: 10k, 30k, 50k, 100k

Butyl-Phthalate, 279.15909
(ubiquitous background ion)

54 ppm apart

Ethyl-Estradiol, 279.17434
This permitted a direct comparison between the LC-HRMS and LC-MS/MS data. The data indicated that the selectivity of LC-HRMS exceeds LC-MS/MS, if high resolution mass spectrometry (HRMS) data is recorded with a resolution of 50,000 full width at half maximum (FWHM) and a corresponding mass window. This conclusion was further supported by experimental data (MS/MS based trace analysis).

This is to demonstrate that Exactive and HRAM with 50K resolution is equivalent or better than QQQ.
Why HR/AM Q Exactive Large Molecule
Small vs Large Chemical Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Small</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endogenous</td>
<td>No</td>
<td>Often Yes</td>
</tr>
<tr>
<td>Solubility</td>
<td>Hydrophobic</td>
<td>Hydrophilic</td>
</tr>
<tr>
<td>Purity</td>
<td>Homogeneous</td>
<td>Heterogeneous</td>
</tr>
<tr>
<td>Stability</td>
<td>Chemical/enzymatic</td>
<td>Immunologic/enzymatic</td>
</tr>
<tr>
<td>Stability</td>
<td>Drug</td>
<td>Drug + Reagents</td>
</tr>
<tr>
<td>Basis of Measurement</td>
<td>Analyte (Direct)</td>
<td>Antigen-Ab reaction (Indirect)</td>
</tr>
<tr>
<td>Reagents</td>
<td>Common and available</td>
<td>Unique, not commercial or available</td>
</tr>
<tr>
<td>Calibration Curves</td>
<td>Linear</td>
<td>Non-Linear</td>
</tr>
<tr>
<td>Expected/Common interferences</td>
<td>Yes/knowledge</td>
<td>Unknown</td>
</tr>
<tr>
<td>Technology</td>
<td>LC/MS</td>
<td>LBA: ELISA, RIA, ECL, Multiplexing</td>
</tr>
<tr>
<td>Development Time</td>
<td>Weeks</td>
<td>Months</td>
</tr>
</tbody>
</table>

B. De Silva, Bristol-Myers Squibb
Real High Resolution to Increased Selectivity

Multiplex SIM Mode: SDLAVPSELALLK

Resolution : 70 000

Resolution : 140 000

> Separation of interfering signals: improvement of LOQ (200 x)
> Increase in cycle time (~ 2 x)
Sensitivity Gain by Selected Ion Monitoring (SIM)

XIC for DIKCSNILLNNSGQIK at m/z 1007.0435(2+)

- Spectrum noise is dependent on the ratio of compound within a certain ion population
- Spectrum noise is much less in SIM mode
- Sensitivity gain 5 – 10 x with SIM mode
- The gain will be higher in more complex matrices
Alprazolam, Full Scan Experiment

Alprazolam

\[Y = 6366.31 + 514.015 \times X \quad R^2 = 0.9967 \quad W: 1/X \]

50 ppt – 10 ppb
250 fg oc - 50 pg oc

Zoom in 50 ppt- 100ppt
Alprazolam SIM Experiment

Alprazolam

$Y = -3135.8 + 552.216 \times X$ \hspace{0.5cm} R^2 = 0.9982 \hspace{0.5cm} W: 1/X

50 ppt – 10 ppb
250 fg oc - 50 pg oc

10 ppt – 10 ppb
50 fg oc - 50 pg oc

Zoom 10 ppt - 100 ppt
Q Exactive
High Throughput HR/AM Quantitation

QQ-Orbi

[Diagram showing the process of high throughput HR/AM quantitation]
The Q Exactive: Hardware Innovations

- HCD Cell
- Orbitrap Mass Analyzer
- Enhanced FT
- C-Trap
- Quadrupole Mass Filter
- S-lens Ion Source
Benchtop Orbitraps vs QToFs

• All high-resolution, accurate mass instruments trade in three “currencies”
 • Scan speed (Hz) – also called “dwell time” which is familiar to triple quad users
 • Resolution
 • Sensitivity
Benchtop Orbitraps vs QToFs

- ToF based instruments trade **speed** for **sensitivity**
- Resolution is based on flight path so it is “fixed” – with a mass dependence
- You can scan at 100 Hz… but data compromised
- Typical recommended full scan speed – 150-250 ms
- This means ToF scan speeds are 4-10 Hz.
Benchtop Orbitraps vs QToFs

- Orbitrap based instruments trade speed and resolution
- Resolution comes from more time spent measuring the transient
- Slow down to get more resolution
- Sensitivity is “fixed” since we pre-fill the C-trap for up to the Orbitrap scan time (it doesn’t “miss” any ions)
Plecanatide Peptide Analysis – Pyxant Laboratories
Plecanatide at 35K Resolution

%CV = Variability based on Peak Area
%RSD = Variability based on Calculated Concentration

<table>
<thead>
<tr>
<th>filename</th>
<th>Sample Typ</th>
<th>Response</th>
<th>ISTD Area</th>
<th>Response Ra</th>
<th>Specified Con</th>
<th>Calculated Con</th>
<th>% CV</th>
<th>Level</th>
<th>% Diff</th>
<th>% RSD</th>
<th>RT</th>
<th>Units</th>
<th>Exclude</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>standard</td>
<td>131404</td>
<td>3208944</td>
<td>0.0409</td>
<td>1.00</td>
<td>1.68</td>
<td>12.30</td>
<td>1</td>
<td>67.76</td>
<td>5.23</td>
<td>3.42</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>standard</td>
<td>108788</td>
<td>3098940</td>
<td>0.0351</td>
<td>1.00</td>
<td>1.57</td>
<td>12.30</td>
<td>1</td>
<td>56.84</td>
<td>5.23</td>
<td>3.42</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>standard</td>
<td>107522</td>
<td>3526069</td>
<td>0.0305</td>
<td>1.00</td>
<td>1.48</td>
<td>12.30</td>
<td>1</td>
<td>48.21</td>
<td>5.23</td>
<td>3.45</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>standard</td>
<td>132893</td>
<td>3505742</td>
<td>0.0379</td>
<td>1.00</td>
<td>1.62</td>
<td>12.30</td>
<td>1</td>
<td>62.08</td>
<td>5.23</td>
<td>3.46</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>standard</td>
<td>251691</td>
<td>3286635</td>
<td>0.0765</td>
<td>2.50</td>
<td>2.34</td>
<td>6.81</td>
<td>2</td>
<td>-6.24</td>
<td>4.03</td>
<td>3.42</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>standard</td>
<td>228167</td>
<td>3232283</td>
<td>0.0706</td>
<td>2.50</td>
<td>2.23</td>
<td>6.81</td>
<td>2</td>
<td>-10.72</td>
<td>4.03</td>
<td>3.41</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>standard</td>
<td>226104</td>
<td>3486663</td>
<td>0.0648</td>
<td>2.50</td>
<td>2.12</td>
<td>6.81</td>
<td>2</td>
<td>-15.05</td>
<td>4.03</td>
<td>3.46</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>standard</td>
<td>250258</td>
<td>3552091</td>
<td>0.0705</td>
<td>2.50</td>
<td>2.23</td>
<td>6.81</td>
<td>2</td>
<td>-10.83</td>
<td>4.03</td>
<td>3.47</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>standard</td>
<td>850216</td>
<td>3173090</td>
<td>0.2679</td>
<td>10.00</td>
<td>5.92</td>
<td>1.63</td>
<td>3</td>
<td>-40.78</td>
<td>3.39</td>
<td>3.40</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>standard</td>
<td>853730</td>
<td>3068490</td>
<td>0.2786</td>
<td>10.00</td>
<td>6.12</td>
<td>1.63</td>
<td>3</td>
<td>-38.79</td>
<td>3.39</td>
<td>3.41</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>standard</td>
<td>956214</td>
<td>3509589</td>
<td>0.2277</td>
<td>10.00</td>
<td>6.01</td>
<td>1.63</td>
<td>3</td>
<td>-39.88</td>
<td>3.39</td>
<td>3.46</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>standard</td>
<td>922940</td>
<td>3357372</td>
<td>0.2752</td>
<td>10.00</td>
<td>6.06</td>
<td>1.63</td>
<td>3</td>
<td>-39.42</td>
<td>3.39</td>
<td>3.48</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>standard</td>
<td>4164263</td>
<td>3224928</td>
<td>1.2913</td>
<td>25.00</td>
<td>25.06</td>
<td>4.50</td>
<td>4</td>
<td>0.23</td>
<td>3.32</td>
<td>3.42</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>standard</td>
<td>3618758</td>
<td>3112862</td>
<td>1.2268</td>
<td>25.00</td>
<td>23.85</td>
<td>4.50</td>
<td>4</td>
<td>-4.59</td>
<td>3.32</td>
<td>3.42</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>standard</td>
<td>4573684</td>
<td>3826407</td>
<td>1.3953</td>
<td>25.00</td>
<td>23.26</td>
<td>4.50</td>
<td>4</td>
<td>-6.94</td>
<td>3.32</td>
<td>3.49</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>standard</td>
<td>4498349</td>
<td>3687025</td>
<td>1.1827</td>
<td>25.00</td>
<td>22.65</td>
<td>4.50</td>
<td>4</td>
<td>-9.38</td>
<td>3.32</td>
<td>3.46</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>standard</td>
<td>1301566</td>
<td>3353731</td>
<td>3.8810</td>
<td>75.00</td>
<td>73.48</td>
<td>4.20</td>
<td>5</td>
<td>-2.02</td>
<td>3.41</td>
<td>3.41</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>standard</td>
<td>10127192</td>
<td>2664140</td>
<td>3.7993</td>
<td>75.00</td>
<td>71.96</td>
<td>4.20</td>
<td>5</td>
<td>-4.06</td>
<td>3.41</td>
<td>3.41</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>standard</td>
<td>9468194</td>
<td>2600705</td>
<td>3.6406</td>
<td>75.00</td>
<td>69.99</td>
<td>4.20</td>
<td>5</td>
<td>-8.01</td>
<td>3.41</td>
<td>3.49</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>standard</td>
<td>9583718</td>
<td>2711813</td>
<td>3.5341</td>
<td>75.00</td>
<td>67.00</td>
<td>4.20</td>
<td>5</td>
<td>-10.67</td>
<td>3.41</td>
<td>3.50</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>standard</td>
<td>1477006</td>
<td>2779170</td>
<td>5.3171</td>
<td>100.00</td>
<td>100.34</td>
<td>3.45</td>
<td>6</td>
<td>0.34</td>
<td>3.32</td>
<td>3.41</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>standard</td>
<td>14242167</td>
<td>2059859</td>
<td>5.0759</td>
<td>100.00</td>
<td>95.83</td>
<td>3.45</td>
<td>6</td>
<td>-4.17</td>
<td>3.32</td>
<td>3.42</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>standard</td>
<td>14564685</td>
<td>2987270</td>
<td>4.9057</td>
<td>100.00</td>
<td>92.65</td>
<td>3.45</td>
<td>6</td>
<td>-7.35</td>
<td>3.32</td>
<td>3.47</td>
<td>ng/mL</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>standard</td>
<td>14171611</td>
<td>2831292</td>
<td>5.0054</td>
<td>100.00</td>
<td>94.51</td>
<td>3.45</td>
<td>6</td>
<td>-5.49</td>
<td>3.42</td>
<td>3.49</td>
<td>ng/mL</td>
<td></td>
</tr>
</tbody>
</table>

%CV is good
%Diff is not good
%RSD is good
Plecanatide at 70K Resolution

<table>
<thead>
<tr>
<th>File Name</th>
<th>Sample Type</th>
<th>Response</th>
<th>ISTD Area</th>
<th>Response Ratio</th>
<th>Specified Conc.</th>
<th>Calculated Conc.</th>
<th>% CV</th>
<th>Level</th>
<th>% Diff</th>
<th>% RSD</th>
<th>RT</th>
<th>Units</th>
<th>Exclude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard-1-01</td>
<td>Standard</td>
<td>113704</td>
<td>2948030</td>
<td>0.0386</td>
<td>1.00</td>
<td>50.31</td>
<td>-4.84</td>
<td>6.62</td>
<td>3.33 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-1-02</td>
<td>Standard</td>
<td>105601</td>
<td>2888844</td>
<td>0.0366</td>
<td>1.00</td>
<td>50.31</td>
<td>6.10</td>
<td>6.62</td>
<td>3.35 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-1B-01</td>
<td>Standard</td>
<td>103683</td>
<td>3294333</td>
<td>0.0397</td>
<td>1.00</td>
<td>50.31</td>
<td>-1.32</td>
<td>6.62</td>
<td>3.40 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-1B-02</td>
<td>Standard</td>
<td>123336</td>
<td>3209970</td>
<td>0.0412</td>
<td>1.00</td>
<td>50.31</td>
<td>3.67</td>
<td>6.62</td>
<td>3.40 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-2-01</td>
<td>Standard</td>
<td>286465</td>
<td>3069126</td>
<td>0.0933</td>
<td>2.50</td>
<td>5.59</td>
<td>8.25</td>
<td>6.19</td>
<td>3.36 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-2-02</td>
<td>Standard</td>
<td>253434</td>
<td>2868547</td>
<td>0.0848</td>
<td>2.50</td>
<td>5.59</td>
<td>-2.69</td>
<td>6.19</td>
<td>3.35 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-2B-01</td>
<td>Standard</td>
<td>327379</td>
<td>3373348</td>
<td>0.0970</td>
<td>2.50</td>
<td>5.59</td>
<td>13.01</td>
<td>6.19</td>
<td>3.41 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-2B-02</td>
<td>Standard</td>
<td>309610</td>
<td>3339213</td>
<td>0.0924</td>
<td>2.50</td>
<td>5.59</td>
<td>7.07</td>
<td>6.19</td>
<td>3.42 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-3-01</td>
<td>Standard</td>
<td>1048991</td>
<td>2918906</td>
<td>0.3593</td>
<td>10.00</td>
<td>11.23</td>
<td>12.29</td>
<td>2.81</td>
<td>3.35 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-3-02</td>
<td>Standard</td>
<td>1000156</td>
<td>2943045</td>
<td>0.3398</td>
<td>10.00</td>
<td>10.60</td>
<td>6.04</td>
<td>2.81</td>
<td>3.36 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-3B-01</td>
<td>Standard</td>
<td>1149504</td>
<td>3318885</td>
<td>0.3464</td>
<td>10.00</td>
<td>10.81</td>
<td>8.12</td>
<td>2.81</td>
<td>3.40 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-3B-02</td>
<td>Standard</td>
<td>1168309</td>
<td>3258883</td>
<td>0.3586</td>
<td>10.00</td>
<td>11.21</td>
<td>12.11</td>
<td>2.81</td>
<td>3.42 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-4-01</td>
<td>Standard</td>
<td>2387633</td>
<td>3014232</td>
<td>0.7921</td>
<td>25.00</td>
<td>25.09</td>
<td>0.38</td>
<td>3.46</td>
<td>3.34 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-4-02</td>
<td>Standard</td>
<td>2341241</td>
<td>2994317</td>
<td>0.7819</td>
<td>25.00</td>
<td>24.77</td>
<td>3.43</td>
<td>3.46</td>
<td>3.35 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-4B-01</td>
<td>Standard</td>
<td>2797396</td>
<td>3495030</td>
<td>0.8004</td>
<td>25.00</td>
<td>25.36</td>
<td>1.44</td>
<td>3.46</td>
<td>3.40 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-4B-02</td>
<td>Standard</td>
<td>2536197</td>
<td>3476871</td>
<td>0.8445</td>
<td>25.00</td>
<td>26.77</td>
<td>7.09</td>
<td>3.46</td>
<td>3.41 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-5-01</td>
<td>Standard</td>
<td>6906220</td>
<td>3228073</td>
<td>2.1394</td>
<td>75.00</td>
<td>68.26</td>
<td>-8.99</td>
<td>1.24</td>
<td>3.35 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-5-02</td>
<td>Standard</td>
<td>5593996</td>
<td>2573124</td>
<td>2.1740</td>
<td>75.00</td>
<td>69.37</td>
<td>-7.51</td>
<td>1.24</td>
<td>3.35 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-5B-01</td>
<td>Standard</td>
<td>5652918</td>
<td>2578403</td>
<td>2.1924</td>
<td>75.00</td>
<td>69.96</td>
<td>-6.72</td>
<td>1.24</td>
<td>3.32 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-5B-02</td>
<td>Standard</td>
<td>5593267</td>
<td>2537678</td>
<td>2.1998</td>
<td>75.00</td>
<td>70.19</td>
<td>-6.41</td>
<td>1.24</td>
<td>3.32 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-6-01</td>
<td>Standard</td>
<td>7753560</td>
<td>2642474</td>
<td>2.9342</td>
<td>100.00</td>
<td>93.72</td>
<td>-3.04</td>
<td>1.90</td>
<td>3.36 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-6-02</td>
<td>Standard</td>
<td>8026890</td>
<td>2669290</td>
<td>2.9854</td>
<td>100.00</td>
<td>95.36</td>
<td>-4.64</td>
<td>1.90</td>
<td>3.36 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-6B-01</td>
<td>Standard</td>
<td>8573083</td>
<td>2806049</td>
<td>3.0574</td>
<td>100.00</td>
<td>97.67</td>
<td>-2.33</td>
<td>1.90</td>
<td>3.36 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard-6B-02</td>
<td>Standard</td>
<td>8194065</td>
<td>2785632</td>
<td>2.9418</td>
<td>100.00</td>
<td>93.96</td>
<td>-6.04</td>
<td>1.90</td>
<td>3.36 ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

%CV = Variability based on Peak Area
%RSD = Variability based on Calculated Concentration

%CV is good
%Diff is good
%RSD is good
Plecanatide at 35K Resolution Chromatograms

Blank

1 ng/mL

250 ng/mL

QC 0

QC Low

QC High
Plecanatide at 70K Resolution Chromatograms

Blank

1 ng/mL

250 ng/mL

QC 0

QC Low

QC High
High Resolution Ensures Accurate Quantification Using SIM

Resolution = 35 K

Resolution = 70 K

Actual

Theoretical

Theoretical Mass $[M+2H]^+ = 841.31987$
• Validated Quantitation of Hepcidin
A Validated Method for the Definitive Quantitation of Hepcidin-25 in Human Serum by LC/MS using high resolution, accurate mass MS

• John E. Buckholz, Gary A. Schultz, Barry R. Jones, Kristen M. Bearup, Kathlyn M. Porter, Danielle J. Strong, Johnson Zhang
• Advion BioServices, Inc., Ithaca, NY
Hepcidin is a 25-amino acid peptide hormone and is the central regulator of iron metabolism making it an interesting biomarker for many applications.

25 amino acids, folded over in a hairpin shape with 4 disulfide bridges at Cys7-Cys23, Cys10-Cys22, Cys11-Cys19, Cys13-Cys14

Internal Standard

Mouse hepcidin molecular weight = 2752.02 g/mol

Mouse Hepcidin Sequence = DTNFPICIFCCKCCNNSQCGICCKT
Methods
Preparation and Extraction Procedure

• Protein precipitation extraction
• Ostro block for phospholipid removal
• 96 well format
• Reversed phase chromatography
• Q-Exactive
• Human Hepcidin Sequence = DTHFPICICIFCCGCHRSKCGMCCKT
Hepcidin Product Ion Mass Spectrum

Q1 Scan
[M+4H]$^4+$
Isotope pattern confirmation
human hepcidin

Theoretical mass spectrum @ 40,000 FWHM resolution
parameter

Experimental mass spectrum at 256 ng/mL
HRAM hepcidin @ 30,000 FWHM

Top 6 isotopes summed using +/- 5 ppm mass tolerance

\[[M+5H]^{5+} \]

\[[M+4H]^{4+} \]

\[[M+3H]^{3+} \]
Human Hepcidin extracts from serum

QQQ m/z 698.2 > m/z 1040.0

Q-E SIM – [M+4H]^4+ Top 6 Sum

Blank

Std 1 2ng/mL

Std 2 4ng/mL

Blank

Std 1 2ng/mL

Std 2 4ng/mL
Linear Dynamic Range HRAM-MS
human hepcidin using 140,000 FWHM resolution

- Instrument Response
- Nominal Conc.

Linear - Weighting Factor = 1/X**2
Slope = 0.005439
Intercept = -0.003694
r-Squared = 0.9927
LLOQ = 2.0 ULOQ = 2048.0
Mean bias = 5.3
Standard deviation = 4.9
Accuracy and Precision HRAM-MS

Human hepcidin using 140,000 FWHM acquisition parameter

<table>
<thead>
<tr>
<th>Theor. Conc., ng/mL</th>
<th>LLOQQC</th>
<th>LQC</th>
<th>MQC</th>
<th>HQC</th>
<th>ULOQQC</th>
<th>50x DilQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2.2</td>
<td>6.7</td>
<td>1067.5</td>
<td>1589.3</td>
<td>2160.2</td>
<td>52576.7</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.2</td>
<td>0.4</td>
<td>38.7</td>
<td>32.9</td>
<td>55.8</td>
<td>1828.9</td>
</tr>
<tr>
<td>%CV</td>
<td>9.1</td>
<td>6</td>
<td>3.6</td>
<td>2.1</td>
<td>2.6</td>
<td>3.5</td>
</tr>
<tr>
<td>%RE</td>
<td>110</td>
<td>111.7</td>
<td>104.2</td>
<td>101.6</td>
<td>105.5</td>
<td>105.2</td>
</tr>
<tr>
<td>Replicates, n</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
• Same instrument for qualitative and quantitative work.
• Operated under multiple modes, i.e., full scan, SIM and MS/MS.
• MS tuning simpler than triple quadrupoles.
• Enhanced selectivity by exact mass rather than fragment ions.
• Increased sensitivity by noise-free baseline and no signal loss from fragmentation.
• Increased mass range good for large molecule quantitation.
• Q Exactive can be used for quantitative bioanalysis
• Sensitivity (S/N) can be improved
• Easy to operate and proven to be potentially beneficial for assays including:
 – Difficult to fragment
 – High background
 – Multiple charges
 – High mass
Industry Trends
High Throughput HR/AM Quantitation

Thermo Posters at ASMS 2012

- **Protein Quan**
 - Th625, Zhang

- **IS drugs in blood**
 - TP36, Van Natta, Clark

- **Toxins in food**
 - T576, Wang

- **Pesticides in matrix**
 - T590, Scheibner
 - W569, Yang

- **In vitro metabolism**
 - Th379, Murphy

- **Antibiotics in water**
 - M542, Beck

- **Vitamin D in plasma**
 - T698, Berube

- **Drug stability**
 - Th347, Duczak

- **PK drug discovery**
 - TP36, Gao

- **Library Screening**
 - W107, Brant

- **Bioanalysis**
 - Th342, Cunniff

- **Drug metabolites**
 - Th342, Yang

- **Drug stability**
 - Th347, Duczak

- **Ligand binding assay**
 - M115, Murphy

- **rHuEPO in horse plasma**
 - M121, Dauley

- **Drugs in blood**
 - TP36, Van Natta

- **Melamine in pharma**
 - ThP28, Comstock

- **PK drug discovery**
 - TP36, Gao

- **Library Screening**
 - W107, Brant
• Oral: WOC pm - Regulated Bioanalysis using High Resolution LC/MS: Headache or Opportunity?

 • Quantitative Pharmacokinetic Sample Analysis and Metabolite Identification of Buspirone using High Resolution Accurate Mass Spectrometry, Kevin Cook¹; Rose Herbold¹; Keeley Murphy ¹; Panos Hatsis ², ¹Thermo Fisher Scientific, San Jose, CA; ²Novartis, Cambridge, MA

 • Evaluation of Resolving Power and Extraction Window with Comparison of Profile and Centroid Modes for High-Resolution Mass Spectrometry Phospholipid Quantitation, Mingkun Fu; Qing Lu, Millennium: the Takeda Oncology Company, Cambridge, MA

• Oral: MOC pm - Integrated Qualitative and Quantitative LC-MS for Small Molecule Analysis

 • Development of a Higher Throughput Metabolite Screening Assay in Early ADME Profiling Using Generic HRMS Acquisition and Automated Data Processing, Anthony Paiva¹; Cheryl Klakouski¹; Tatyana Zvyaga¹; Dieter Drexler¹; Jonathan Josephs ¹; Harold Weller¹; Wilson Shou ¹; Ismael Zamora², ¹Bristol-Myers Squibb Company, Wallingford, CT; ²Lead Molecular Design, San Cugat del Valles, Spain
ASMS – Q Exactive Pharma/Biopharma

- Drug discovery PK analysis using a quadrupole high resolution orbitrap mass spectrometer (Q Exactive): an alternative approach to triple quadrupole, Hongying Gao; Andre Negahban, Pfizer, Inc, Groton, CT
- The Opening of Bioanalytical Space Through Benchtop Accurate Mass Spectrometry: The Analysis of Propofol and its Four Metabolites, Beijing Tan¹; Yizhong Zhang²; Andre Negahban³; Hongying Gao⁴; Christopher Holliman⁵, ¹Pfizer, Inc., Groton, CT; ²Pfizer Inc., Groton, CT; ³Pfizer, Groton, CT; ⁴Pfizer, Inc, Groton, CT; ⁵Pfizer Inc, Groton, CT
- High Throughput Bioanalysis of Bile Acids and Bile Salts Using UHPLC Coupled with High Resolution Mass Spectrometers (HR-MS), Jie Ding; Eric Lund; Donald Mckenzie; John Lindsay, Covance Laboratories Inc., Madison, WI
ASMS – Q Exactive Pharma/Biopharma

• Utilizing a Non-Targeted HR/AM-MS Method to Accelerate Quantitative Throughput for In-Vitro Metabolic Profiling, Keeley Murphy; Kevin Cook; Tim Stratton; Patrick Bennett, Thermo Fisher Scientific, San Jose, CA

• Ultra High-throughput MS Methods for the Discovery of Histone Demethylase Inhibitors, John M. Peltier¹; Nicole White¹; Priti Gaitonde¹; Wendy Broom¹; Zhao Bin Kang¹; Ji-Hu Zhang¹; Michael Acker¹; Keeley Murphy²; David Farley¹; W. Adam Hill¹, ¹Novartis Institutes for Biomedical Research, Cambridge, MA; ²Thermo-Fisher Scientific, San Jose, US

• Quantitation of Oligonucleotides In Human Plasma Using Q-Exactive Orbitrap High Resolution MS, Weiwei Yuan¹; Laixin Wang¹; Min Meng¹; Jessica Wang²; Kevin Cook ²; Patrick Bennett², ¹Tandem Labs, Salt Lake City, UT; ²Thermo Fisher Scientific, San Jose, CA

• Robust Ultra High Sensitivity Quantitative Analysis using Low Flow LC/MS/MS and Reduced Phospholipid Matrix Effects. Myth or Reality?, David Humphries¹; Roger N. Hayes¹; Kevin Cook²; Mark Dreyer²; Xiang He²; Subodh Nimkar²; Patrick Bennett², ¹MPI Research, Mattawan, MI; ²Thermo Fisher Scientific, San Jose, CA
ASMS – Q Exactive Pharma/Biopharma

- **Evaluation of Resolution/Scan Speed Limitations for Quantitation of Small Molecules by UHPLC-HRMS on the Q-Exactive Platform**, Allysen Meymaris\(^1\); Richard Lelacheur\(^1\); Patrick Bennett\(^2\); Kevin Cook\(^2\); Xin Zhang\(^1\), \(^1\)Agilux Labs, Worcester, MA; \(^2\)Thermo Fisher, San Jose, CA

- **Quantification of Plant Expressed Proteins Using High Resolution LC/MS**, Jeffrey Gilbert; Trent Oman; Debbie Schwedler; John Lawry; Jesse Balcer; Suresh Babu Annangudi Palani; Yelena A. Adelfinskaya; Brian Wendelburg; Barry Schafer, Dow AgroSciences, Indianapolis, IN

- **Quantitative Bioanalysis using the Q Exactive HRMS: Factors in choosing Resolution and Scan Type**, Jack Cunniff\(^1\); Chris Yang\(^2\); Yujin Wang\(^2\); Kevin Cook\(^1\); Patrick Bennett\(^1\), \(^1\)Thermo Fisher Scientific, San Jose, CA; \(^2\)Gilead Sciences, Foster City, CA

- **Improving the Bioanalysis of Endogenous Bile Acids as Biomarkers for Hepatobiliary Toxicity**, Troy Voelker\(^1\); Kevin Cook\(^2\); Min Meng \(^1\); Patrick Bennett\(^2\), \(^1\)Tandem Labs, Salt Lake City, UT; \(^2\)Thermo Fisher Scientific, San Jose, CA
ASMS – Q Exactive Pharma/Biopharma

• UHPLC-ESI-HRMS quantitation of metabolites without using reference standards-Impact of mobile phase composition on MS response, Sumithra Katragadda; Dil Ramanthan, Kean University, Iselin, NJ

• LC/SRM Has Come of Age to Quantitate Proteins: Amyloid β isoforms measured in Human Cerebrospinal Fluid and Compared to ELISA, Kwasi Mawuenyega; Tom Kasten; Vitaliy Ovod; Kelly Moor; Ling Munsell; Rose Connors; Wendy Sigurdson; Randall Bateman, Washington University School of Medicine, Saint Louis, MO

• Quantitation of Melatonin and N-Acetylserotonin in Human Plasma by Nanoflow LC-MS/MS and Electrospray LC-MS/MS, Melissa D. Carter; M. Wade Calcutt; Beth A. Malow; Kristie Lindsey Rose; David L. Hachey, Vanderbilt University, Nashville, TN
Acknowledgements

- **Thermo Fisher Scientific**
 - Patrick Bennett
 - Kevin Cook
 - Zhiqi Hao
 - Keeley Murphy
 - Jessica Wang
 - TFS Demo Labs

- **Advion Bioservices Inc.**
 - John Buckholz
 - Gary Schultz
 - Barry Jones
 - Kristen Bearup
 - Kathlyn Porter
 - Danielle Strong
 - Johnson Zhang

Visit the site at http://www.planetorbitrap.com