Getting More with Less: Improving Sensitivity and Reducing Sample Consumption in LC/MS Assays for Endogenous and Injected Glucagon, 6 Insulins, and Teriparatide

Erin E. Chambers
Principal Scientist
Outline

- Background and Key Challenges
 - Practical Applications of Integrated Microscale LC
 - Routine Ultra-high Sensitivity Teriparatide Quantification: Adaption and Benefits from Analytical to Microscale LC
 - Endogenous and Therapeutic Glucagon Analysis
 - Increasing Sensitivity and Reducing Sample Volume Required for Quantification of Multiple Insulin Analogs
 - Reducing Sample Volumes for Small peptides
- Conclusions
Why LC-MS/MS?

Why an LC-MS/MS based assay?
- Challenges with ligand-binding assays
 - inability to distinguish closely related analogs
 - require separate assay for each peptide
 - limited linear dynamic range
 - Possible cross reactivity
 - Lack of standardization
 - Long development times

Benefits of LC-MS/MS
- Easy to multiplex
- Broad linear dynamic range
- Accurate, precise
- Universal
- Faster, cheaper method development
However:

- Ultra-high sensitivity required for most quantitative peptide assays
- Need to obtain the sensitivity of LBAs using LC/MS
 - Small sample volumes
- Need to obtain specificity that is comparable to LBAs using LC/MS
Outline

- Background and Key Challenges
- Practical Applications of Integrated Microscale LC
 - Routine Ultra-high Sensitivity Teriparatide Quantification: Adaptation and Benefits from Analytical to Microscale LC
 - Endogenous and Therapeutic Glucagon Analysis
 - Increasing Sensitivity and Reducing Sample Volume Required for Quantification of Multiple Insulin Analogs
 - Reducing Sample Volumes for Small peptides
- Conclusions
Teriparatide (rhPTH)

- Recombinant form of 1 – 34 amino acids from human parathyroid hormone (PTH)

- Stimulates new bone formation leading to increased bone mineral density

- Use for people with osteoporosis at a high risk for fracture
Background

Why LC/MS for teriparatide?

1. Coming off patent 2018
 - Bioequivalence studies
 - Development of new versions

2. Replacement for original RIA method
 - Improved accuracy and precision through LC/MS
 - Avoid cross-reactivity and dilution issues
 - LC/MS can differentiate parent and metabolites and allows single assay for multiple compounds
Specific Challenges in Developing an LC-MS/MS Assay for Teriparatide

★ Obtain sensitivity and specificity similar to LBAs
 - Minimize sample volume
 - Specificity in matrix
 - High level of non-specific binding (NSB)

★ Low MS sensitivity
 - Poor fragmentation
 - Multiple precursors
 - Typical 20 µg clinical dose = plasma levels ~ 50 pg/mL

- Chromatographic peak shape
- Protein binding
Original **Analytical** Scale Method

- **Analytical Column:** ACQUITY UPLC CSH C18 2.1 X 50mm, 1.7 μm
- **Mobile phase A:** 0.1% formic acid in water
- **Mobile phase B:** 0.1% formic acid in ACN
- **Gradient:** hold 15% B for 0.2 min, ramp to 50% B at 3.8 min, flush with 98% B, return to initial
- **Flow Rate:** 0.4 mL/min
- **Column Temp:** 60°C
- **Sample Temp:** 5°C
- **Injection Volume:** 30 μL

Chambers et al, *Journal of Chromatography B*, Volume 938, 1 November 2013, Pages 96-104
Extraction Conditions

PPT followed by Polymeric Reversed-Phase SPE in µElution 96-well plate

- **PPT**: 200 µL human plasma sample precipitated 1:1 with 5% NH4OH in ACN, vortex spin 15 min at 4000 rpm; dilute supernatant with 1 mL water

- **SPE**: Oasis® HLB µElution 96-well plate
 - Condition: 200 µL methanol
 - Equilibrate: 200 µL water
 - Load Sample: entire diluted supernatant in 2 steps
 - Wash: 200 µL 5% MeOH in water
 - Elute: 2X 25 µL 60/34/5/1 ACN/water/TFE/TFA
 - Dilute: 50 µL water
 - Inject 30 µL

PPT Improves Specificity by Eliminating High Abundance Proteins
Analytical Scale

75 pg/ml

35 pg/ml

20 pg/ml

Blank human plasma

200 µL sample, 30 µL injection
Standard Curve Statistics

<table>
<thead>
<tr>
<th></th>
<th>Std. Conc. (pg/mL)</th>
<th>Mean Calculated Conc. (pg/mL)</th>
<th>Std. Deviation</th>
<th>%CV</th>
<th>Number of Replicates Passed</th>
<th>Mean Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Plasma Lot# X1793C (Biological Specialty Corp.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15pg/ml</td>
<td>15</td>
<td>16.65</td>
<td>0.64</td>
<td>3.9</td>
<td>3/3</td>
<td>111.0</td>
</tr>
<tr>
<td>30pg/ml</td>
<td>30</td>
<td>30.48</td>
<td>1.39</td>
<td>4.6</td>
<td>3/3</td>
<td>101.6</td>
</tr>
<tr>
<td>40pg/ml</td>
<td>40</td>
<td>41.09</td>
<td>1.95</td>
<td>4.8</td>
<td>3/3</td>
<td>102.7</td>
</tr>
<tr>
<td>60pg/ml</td>
<td>60</td>
<td>62.78</td>
<td>5.20</td>
<td>8.3</td>
<td>3/3</td>
<td>104.6</td>
</tr>
<tr>
<td>80pg/ml</td>
<td>80</td>
<td>75.38</td>
<td>1.56</td>
<td>2.1</td>
<td>3/3</td>
<td>94.2</td>
</tr>
<tr>
<td>100pg/ml</td>
<td>100</td>
<td>94.39</td>
<td>2.78</td>
<td>2.9</td>
<td>3/3</td>
<td>94.4</td>
</tr>
<tr>
<td>200pg/ml</td>
<td>200</td>
<td>202.60</td>
<td>10.63</td>
<td>5.2</td>
<td>3/3</td>
<td>101.3</td>
</tr>
<tr>
<td>400pg/ml</td>
<td>400</td>
<td>401.90</td>
<td>10.86</td>
<td>2.7</td>
<td>3/3</td>
<td>100.5</td>
</tr>
<tr>
<td>500pg/ml</td>
<td>500</td>
<td>498.47</td>
<td>10.36</td>
<td>2.1</td>
<td>3/3</td>
<td>99.7</td>
</tr>
</tbody>
</table>
Representative Standard Curve

Teriparatide
$R^2 = 0.998$
Quadratic fit, $1/x$ weighting

Teriparatide Extracted from Human Plasma: 15-500 pg/mL
Representative QC Statistics

<table>
<thead>
<tr>
<th>Human Plasma Lot# (Biological Specialty Corp.)</th>
<th>Gender</th>
<th>QC Conc. (pg/mL)</th>
<th>Mean Calculated Conc. (pg/mL)</th>
<th>Std. Deviation</th>
<th>%CV</th>
<th>Number of Replicates Passed</th>
<th>Mean Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1793C</td>
<td>Mixed</td>
<td>20</td>
<td>20.25</td>
<td>1.50</td>
<td>7.3</td>
<td>3/3</td>
<td>102.2</td>
</tr>
<tr>
<td>82111</td>
<td>Female</td>
<td>20</td>
<td>33.38</td>
<td>1.75</td>
<td>8.6</td>
<td>3/3</td>
<td>102.2</td>
</tr>
<tr>
<td>57298</td>
<td>Male</td>
<td>20</td>
<td>18.30</td>
<td>0.67</td>
<td>3.7</td>
<td>3/3</td>
<td>91.5</td>
</tr>
<tr>
<td>82740</td>
<td>Female</td>
<td>20</td>
<td>20.74</td>
<td>1.59</td>
<td>7.7</td>
<td>3/3</td>
<td>103.7</td>
</tr>
<tr>
<td>57901</td>
<td>Male</td>
<td>20</td>
<td>19.67</td>
<td>0.60</td>
<td>3.0</td>
<td>3/3</td>
<td>98.3</td>
</tr>
<tr>
<td>X1803C</td>
<td>Mixed</td>
<td>20</td>
<td>21.27</td>
<td>0.96</td>
<td>4.5</td>
<td>2/3</td>
<td>106.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Human Plasma Lot# (Biological Specialty Corp.)</th>
<th>Gender</th>
<th>QC Conc. (pg/mL)</th>
<th>Mean Calculated Conc. (pg/mL)</th>
<th>Std. Deviation</th>
<th>%CV</th>
<th>Number of Replicates Passed</th>
<th>Mean Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1793C</td>
<td>Mixed</td>
<td>35</td>
<td>33.35</td>
<td>1.99</td>
<td>6.0</td>
<td>2/3</td>
<td>95.3</td>
</tr>
<tr>
<td>82111</td>
<td>Female</td>
<td>35</td>
<td>34.48</td>
<td>1.84</td>
<td>5.3</td>
<td>3/3</td>
<td>98.5</td>
</tr>
<tr>
<td>57298</td>
<td>Male</td>
<td>35</td>
<td>31.64</td>
<td>1.81</td>
<td>5.7</td>
<td>3/3</td>
<td>90.4</td>
</tr>
<tr>
<td>82740</td>
<td>Female</td>
<td>35</td>
<td>33.29</td>
<td>1.73</td>
<td>5.2</td>
<td>3/3</td>
<td>95.1</td>
</tr>
<tr>
<td>57901</td>
<td>Male</td>
<td>35</td>
<td>34.71</td>
<td>0.30</td>
<td>0.9</td>
<td>3/3</td>
<td>99.2</td>
</tr>
<tr>
<td>X1803C</td>
<td>Mixed</td>
<td>35</td>
<td>34.24</td>
<td>2.66</td>
<td>7.8</td>
<td>3/3</td>
<td>97.8</td>
</tr>
</tbody>
</table>
What’s Next?

- Desired Improvements
 - Reduce sample size
 • Preclinical tox
 • Pediatrics
 - Increase sensitivity
 - Simplify curve fit

- How do we get there?
Can I Successfully Adapt a Highly Optimized Analytical Scale Method??
Integrated Microflow LC: ionKey/MS Ion Source
Teriparatide ionKey/MS Analysis in Trap and Back-elute Mode

Analyte Band
Microscale Method: At-column-dilution and Trap and Back Elute

- **iKey**: 150 µm X 50 mm BEH PST C18, 1.7 µm
- **Trap column**: Symmetry C18 5 µm, 300 µm X 50mm
- **Mobile phase A**: 0.1% formic acid in water
- **Mobile phase B**: 0.1% formic acid in ACN
- **Loading time**: 2 minutes
- **iKey Temp**: 75°C
- **Injection Volume**: 10-15 µL
- **Gradient**:

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Flow Rate (µL/min)</th>
<th>Composition A (%)</th>
<th>Composition B (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>2.0</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>5.00</td>
<td>2.0</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td>6.00</td>
<td>2.0</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>8.00</td>
<td>2.0</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>9.00</td>
<td>2.0</td>
<td>85</td>
<td>15</td>
</tr>
</tbody>
</table>
Phase 2: Improve Method
Reduce Sample Size from 200 to 50 µL

50 µL human plasma extracted

50 pg/mL

25 pg/mL

15 pg/mL

Blank human plasma

MRM of 4 Channels ES+
687 > 787.1 (Teriparatide 6+)
6.13e4
Area

50 pg/ml qc
6.23;1950
Phase 2: Improve Method
Dynamic Range Increased, Linear Fit

Compound name: Teriparatide 687
Correlation coefficient: $r = 0.999254$, $r^2 = 0.998508$
Calibration curve: $0.010184 \times x + 0.0879951$
Response type: Internal Std (Ref 4), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Teriparatide Extracted from 50 µL Human Plasma: 10-1000 pg/mL
Linear fit and broader range than analytical
Standard Curve Statistics: ionKey/MS

<table>
<thead>
<tr>
<th>Teriparatide Concentration (pg/mL)</th>
<th>Teriparatide/IS Ratio Response</th>
<th>Calculated Teriparatide Concentration (pg/mL)</th>
<th>Mean Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00</td>
<td>0.07</td>
<td>10.56</td>
<td>105.63</td>
</tr>
<tr>
<td>20.00</td>
<td>0.14</td>
<td>20.53</td>
<td>102.63</td>
</tr>
<tr>
<td>40.00</td>
<td>0.29</td>
<td>38.99</td>
<td>97.58</td>
</tr>
<tr>
<td>60.00</td>
<td>0.43</td>
<td>57.58</td>
<td>95.97</td>
</tr>
<tr>
<td>100.00</td>
<td>0.73</td>
<td>97.00</td>
<td>97.00</td>
</tr>
<tr>
<td>300.00</td>
<td>2.17</td>
<td>286.39</td>
<td>95.50</td>
</tr>
<tr>
<td>600.00</td>
<td>4.75</td>
<td>626.81</td>
<td>104.45</td>
</tr>
<tr>
<td>1000.00</td>
<td>8.05</td>
<td>1061.49</td>
<td>106.15</td>
</tr>
<tr>
<td>3000.00</td>
<td>22.31</td>
<td>2937.14</td>
<td>97.95</td>
</tr>
</tbody>
</table>
Representative QC Statistics

<table>
<thead>
<tr>
<th>Teriparatide QC Concentration (pg/mL)</th>
<th>Mean (N=5) Calculated Concentration (pg/mL)</th>
<th>SD</th>
<th>%CV</th>
<th>Mean Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>25.8887</td>
<td>1.32</td>
<td>5.09</td>
<td>103.6</td>
</tr>
<tr>
<td>50</td>
<td>51.4236</td>
<td>1.91</td>
<td>3.72</td>
<td>102.8</td>
</tr>
<tr>
<td>80</td>
<td>83.8803</td>
<td>2.15</td>
<td>2.56</td>
<td>104.9</td>
</tr>
<tr>
<td>200</td>
<td>202.3569</td>
<td>6.49</td>
<td>3.20</td>
<td>101.2</td>
</tr>
<tr>
<td>500</td>
<td>511.1018</td>
<td>15.23</td>
<td>2.98</td>
<td>102.2</td>
</tr>
</tbody>
</table>

Can I Successfully Adapt a Highly Optimized Analytical Scale Method?

Yes!
Absence of Carryover

High QC: 500 pg/mL teriparatide extracted from human plasma

Blank following high QC
Comparison of Original Analytical Scale and New ionKey/MS Method

20 pg/mL teriparatide extracted from human plasma

ionKey/MS method

50 µL plasma
15 µL injection
45:1 S:N

original 2.1 mm method

200 µL plasma
30 µL injection
11:1 S:N
Outline

- Background and Key Challenges
- Practical Applications of Integrated Microscale LC
 - Routine Ultra-high Sensitivity Teriparatide Quantification: Adaption and Benefits from Analytical to Microscale LC
 - Endogenous and Therapeutic Glucagon Analysis
 - Increasing Sensitivity and Reducing Sample Volume Required for Quantification of Multiple Insulin Analogs
 - Reducing Sample Volumes for Small peptides
- Conclusions
Glucagon
MW 3481

Glucagon secretion

- Sympathetic activity
- Secretin
- CCK
- Parasympathetic activity
- Amino Acids
- Insulin
- Glucose

↑ Fatty acids and ketones
↓ Glucose sparing
↓ Inhibition of anabolism
↑ Gluconeogenesis
↓ Glycogenolysis
↓ secretion of Insulin
Injection Volume Scalability on ionKey/MS

- **15µL injection**
 - MRM of 4 Channels ES+
 - 697.1 > 940.2 (Glucagon)
 - 3.87e4 Area

- **10µL injection**
 - MRM of 4 Channels ES+
 - 697.1 > 940.2 (Glucagon)
 - 3.87e4 Area

- **5µL injection**
 - MRM of 4 Channels ES+
 - 697.1 > 940.2 (Glucagon)
 - 3.87e4 Area

Injection Volume Scalability

- **Equivalent to ~3 mL**
 - Area: 7.19;1456
- **Equivalent to ~2 mL**
 - Area: 7.22;949
- **Equivalent to ~1 mL**
 - Area: 7.21;580
25 pg/mL Glucagon in Human Plasma: iKey vs. Analytical Scale

3X > S:N and 5X > intensity from 5 times less injected

5µL injection
15:1 S:N

ionKey/MS method
(150 µm ID)

25 µL injection
5:1 S:N

Original method
(2.1 mm ID)
Representative standard curve and statistics for glucagon extracted from human plasma 12.5-1,000 pg/mL

Compound name: Glucagon 1040
Correlation coefficient: \(r = 0.999889, r^2 = 0.997400 \)
Calibration curve: \(42.6771 \times x - 120.577 \)
Response type: External Std, Area
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

<table>
<thead>
<tr>
<th>Std. Conc. pg/mL</th>
<th>Area</th>
<th>Calc. Conc. pg/mL</th>
<th>%Dev</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Blank</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12.5</td>
<td>469</td>
<td>13.8</td>
<td>10.5</td>
<td>89.5</td>
</tr>
<tr>
<td>12.5</td>
<td>461</td>
<td>13.6</td>
<td>9</td>
<td>91</td>
</tr>
<tr>
<td>25</td>
<td>982</td>
<td>25.8</td>
<td>3.3</td>
<td>96.7</td>
</tr>
<tr>
<td>25</td>
<td>959</td>
<td>25.3</td>
<td>1.1</td>
<td>98.9</td>
</tr>
<tr>
<td>50</td>
<td>2005</td>
<td>49.8</td>
<td>-0.4</td>
<td>100.4</td>
</tr>
<tr>
<td>50</td>
<td>2080</td>
<td>53.5</td>
<td>6.9</td>
<td>93.1</td>
</tr>
<tr>
<td>100</td>
<td>3958</td>
<td>95.6</td>
<td>-4.4</td>
<td>104.4</td>
</tr>
<tr>
<td>100</td>
<td>3733</td>
<td>90.3</td>
<td>-9.7</td>
<td>109.7</td>
</tr>
<tr>
<td>250</td>
<td>10142</td>
<td>240.5</td>
<td>-3.8</td>
<td>103.8</td>
</tr>
<tr>
<td>250</td>
<td>9481</td>
<td>225</td>
<td>-10</td>
<td>110</td>
</tr>
<tr>
<td>500</td>
<td>20893</td>
<td>492.4</td>
<td>-1.5</td>
<td>101.5</td>
</tr>
<tr>
<td>500</td>
<td>20184</td>
<td>475.8</td>
<td>-4.8</td>
<td>104.8</td>
</tr>
<tr>
<td>1000</td>
<td>44244</td>
<td>1039.5</td>
<td>4</td>
<td>96</td>
</tr>
<tr>
<td>1000</td>
<td>44094</td>
<td>1036</td>
<td>3.6</td>
<td>96.4</td>
</tr>
</tbody>
</table>
Representative chromatograms from glucagon extracted from plasma at 12.5, 25, 50, 100, 250, 500 and 10000 pg/mL, compared to blank plasma.
Outline

- Background and Key Challenges
- Practical Applications of Integrated Microscale LC
 - Routine Ultra-high Sensitivity Teriparatide Quantification: Adaption and Benefits from Analytical to Microscale LC
 - Endogenous and Therapeutic Glucagon Analysis
 - Increasing Sensitivity and Reducing Sample Volume Required for Quantification of Multiple Insulin Analogs
 - Reducing Sample Volumes for Small peptides
- Conclusions
Critical Biotherapeutics Coming off Patent: Open to Biosimilar Competition

Modified slide from McKinsey and Company
Data Source: Evaluate Pharma
Insulin and Analogs

Human Insulin
MW 5808

Insulin A Chain
Insulin B Chain

Insulin glargine
(Lantus®)
Avg MW 6063

Insulin A Chain
Insulin B Chain

Insulin detemir
(Levemir®)
Avg MW 5917

Insulin A Chain
Insulin B Chain

Humalog
(insulin lispro)

Insulin aspart
(Novalog®)
Avg MW 5826

Insulin A Chain
Insulin B Chain

Insulin glulisine
(Apidra®)
Avg MW 5823

Insulin A Chain
Insulin B Chain

©2014 Waters Corporation
Xevo TQ-S Triple Quadrupole MS Conditions

<table>
<thead>
<tr>
<th>Specific Insulin</th>
<th>MRM Transition</th>
<th>Cone Voltage (V)</th>
<th>Collision Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glargine</td>
<td>1011->1179</td>
<td>60</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>867->984</td>
<td>60</td>
<td>18</td>
</tr>
<tr>
<td>Lispro</td>
<td>1162->217</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>968.5->217</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>Detemir</td>
<td>1184->454.4</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1184->1366.3</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>Aspart</td>
<td>971.8->660.8</td>
<td>60</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>971.8->1139.4</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>Glulisine</td>
<td>1165->1370</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>1165->346.2</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>Bovine (IS)</td>
<td>956.6->1121.2</td>
<td>60</td>
<td>18</td>
</tr>
<tr>
<td>Human insulin</td>
<td>1162->226</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>968.5->217</td>
<td>50</td>
<td>40</td>
</tr>
</tbody>
</table>

Note: highlighting indicates the primary transitions used for quantification
2.1 mm ID Scale: ACQUITY IClass with 2D Technology Valve Diagram

Pump 1 (Injector)
Pump 2
Pump 3

POSITION 1

Waste
Pump 3

TC

Pump 1: Loading pump
Pump 2: Dilution pump
Pump 3: Elution pump

TC= trapping column
AC= analytical column

POSITION 2

Waste
Pump 3

Pump 1

T

AC
MS

AC
MS
Analytical LC Method: At-column-dilution and Trap and Back Elute

- Analytical Column: CORTECS C18+ 2.1 X 50mm, 1.7 μm
- Trap column: XBridge C18 IS, 3.5 μm, 2.1 X 20mm
- Mobile phase A= 0.1% formic acid in water
- Mobile phase B= 0.1% formic acid in ACN
- Loading time: 2 minutes
- At Column Dilution
- Elution
 - 15 to 40% B over 4 minutes
- Analytical Column Temp: 60°C
- Sample Temp: 15°C
- Injection Volume: 30 μL (can inject 45 μL without breakthrough)
- SNW: 50/25/24/1 ACN/IPA/H2O/FA
Analytical Extraction Conditions

PPT followed by Mixed-mode Strong Anion Exchange SPE in μElution 96-well plate

- **PPT**: 250 μL human plasma sample precipitated 1:1 with 50/50 ACN/MeOH + 1% FA, vortex spin 10 min at 13K rcf, dilute supernatant with 900 μL 5% NH$_4$OH in water
- **SPE**: Oasis® MAX μElution 96-well plate
 - Condition: 200 μL methanol
 - Equilibrate: 200 μL water
 - Load Sample: entire diluted supernatant in 2 steps of ~ 700 μL each
 - Wash: 200 μL 5% NH$_4$OH in water
 - Wash: 200 μL 5% methanol, 1% acetic acid in water
 - Elute: 2X 25 μL 60% methanol, 10% acetic acid in water
 - Dilute: 50 μL water
 - Inject 30 μL

Analytical Scale LC, Plasma detection limit: 50 pg/mL
Analytical Scale Method: Lantus LOD and Low QC in Human Plasma

Low QC 150 pg/mL (25 fmol/mL)

LOD 50 pg/mL (8.25 fmol/mL)

Blank human plasma

Lantus (insulin glargine)

- Top selling insulin analog ($6.6 billion)
- Off patent 2015
- Lots of requests for patent extensions
 - Pediatrics?
 - Different formulations?
- Requires more sensitivity and decreased sample volume
 - <50 pg/mL
 - ≤100 µL sample
- Analytical scale method uses 250 µL sample and reaches a LOD of 50 pg/mL
- Can integrated microscale LC/MS help??
IonKey/MS Lantus Results: 100 μL sample, 10 μL injection

Decrease sample volume, decrease injection volume, increase sensitivity!

200 pg/mL

100 pg/mL

25 pg/mL

Blank extracted plasma

~41 amol on column at LOD
Compound name: Lantus
Correlation coefficient: $r = 0.995564$, $r^2 = 0.991147$
Calibration curve: $0.000398185 \times x - 0.00299844$
Response type: Internal Std (Ref 2), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Graphs showing concentration vs. response and residual vs. concentration.
ionKey/MS: Representative Standard Curve Statistics 25 pg/mL to 10 ng/mL Lantus

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Std. Conc. pg/mL</th>
<th>Retention Time</th>
<th>Area</th>
<th>IS Area</th>
<th>Conc.</th>
<th>%Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank Plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 pg/mL plasma</td>
<td>Standard</td>
<td>25</td>
<td>4.75</td>
<td>41</td>
<td></td>
<td>30</td>
<td>20.4</td>
</tr>
<tr>
<td>50 pg/mL plasma</td>
<td>Standard</td>
<td>50</td>
<td>4.75</td>
<td>620</td>
<td></td>
<td>55</td>
<td>9.2</td>
</tr>
<tr>
<td>100 pg/mL plasma</td>
<td>Standard</td>
<td>100</td>
<td>4.75</td>
<td>1313</td>
<td>32043</td>
<td>111</td>
<td>10.5</td>
</tr>
<tr>
<td>200 pg/mL plasma</td>
<td>Standard</td>
<td>200</td>
<td>4.75</td>
<td>2199</td>
<td>34167</td>
<td>169</td>
<td>-15.4</td>
</tr>
<tr>
<td>500 pg/mL plasma</td>
<td>Standard</td>
<td>500</td>
<td>4.75</td>
<td>5515</td>
<td>30733</td>
<td>458</td>
<td>-8.4</td>
</tr>
<tr>
<td>1 ng/mL plasma</td>
<td>Standard</td>
<td>1000</td>
<td>4.74</td>
<td>11575</td>
<td>32504</td>
<td>902</td>
<td>-9.8</td>
</tr>
<tr>
<td>2 ng/mL plasma</td>
<td>Standard</td>
<td>2000</td>
<td>4.75</td>
<td>20828</td>
<td>31912</td>
<td>1647</td>
<td>-17.7</td>
</tr>
<tr>
<td>5 ng/mL plasma</td>
<td>Standard</td>
<td>5000</td>
<td>4.76</td>
<td>59151</td>
<td>26498</td>
<td>5614</td>
<td>12.3</td>
</tr>
<tr>
<td>10 ng/mL plasma</td>
<td>Standard</td>
<td>10000</td>
<td>4.76</td>
<td>112246</td>
<td>28524</td>
<td>9890</td>
<td>-1.1</td>
</tr>
<tr>
<td>QC 1</td>
<td>QC</td>
<td>150</td>
<td>4.76</td>
<td>2013</td>
<td>33144</td>
<td>160</td>
<td>6.7</td>
</tr>
<tr>
<td>QC 2</td>
<td>QC</td>
<td>750</td>
<td>4.76</td>
<td>9477</td>
<td>33670</td>
<td>714</td>
<td>-4.7</td>
</tr>
<tr>
<td>QC 3</td>
<td>QC</td>
<td>2500</td>
<td>4.76</td>
<td>28692</td>
<td>31598</td>
<td>2288</td>
<td>-8.5</td>
</tr>
<tr>
<td>QC 4</td>
<td>QC</td>
<td>7500</td>
<td>4.75</td>
<td>90793</td>
<td>27901</td>
<td>8180</td>
<td>9.1</td>
</tr>
</tbody>
</table>
Insulin glargine (Lantus) from 50 µL human plasma sample, 10 µL injection

100 pg/mL Lantus

50 pg/mL Lantus

Blank extracted plasma

MRM of 9 Channels ES+
1011.3 > 1179.3 (Lantus)
2.49e4
Area

MRM of 9 Channels ES+
1011.3 > 1179.3 (Lantus)
2.80e4
Area

MRM of 9 Channels ES+
1011.3 > 1179.3 (Lantus)
2.27e4
Area

©2014 Waters Corporation
Outline

- Background and Key Challenges
- Practical Applications of Integrated Microscale LC
 - Routine Ultra-high Sensitivity Teriparatide Quantification: Adaption and Benefits from Analytical to Microscale LC
 - Endogenous and Therapeutic Glucagon Analysis
 - Increasing Sensitivity and Reducing Sample Volume Required for Quantification of Multiple Insulin Analogs
 - Reducing Sample Volumes for Small peptides
- Conclusions
Enhanced sensitivity using ionKey/MS: Desmopressin in human plasma

2.5 pg/mL

Desmopressin MW 1069

200 µL extraction, 5 µL injection

100 µL extraction, 5 µL injection

25 µL extraction, 10 µL injection

~6.5 amol on column
Conclusions

- Integrated microscale LC facilitates increased sensitivity using small sample volumes
- **20-50X cumulative improvement** obtained over 2.1 mm ID scale through:
 - Decreasing sample volume
 - Decreasing injection volume
 - Increasing sensitivity
- Analytical scale quantification methods for teriparatide, glucagon, 6 insulins and small cyclic peptides were adapted to and significantly improved by ionKey/MS
 - Greater S:N, with less sample, and less injected
 - Single pM quantification limits from 25-100 µL of sample
Acknowledgements

Waters Corporation
- Mary Lame
- Paul Rainville
- Pete Claise
- James Murphy
- Jay Johnson
- Brian Edwardsen
- Jonathan Loughlin
- Roger Gilman
- Pete Bastek
- Kenneth Fountain
- Logan Umberger