Considerations for Immunogenicity Assessment at Various Clinical Phases

Kate Peng Ph.D.
Senior Scientist
BioAnalytical Sciences, Genentech

September 20, 2018

EBF, Lisbon Portugal
Immunogenicity Assessment Is An Integral Part of Biotherapeutic Development

Antibody-dependent mechanisms of action (ADAs) are defined as presence of host antibodies directed towards the biotherapeutic in the circulation.
Outline

• Immunogenicity assessment at various clinical stages
 • FIH study: risk-based strategies for immunogenicity assessment
 • Bioanalytical strategy: a tiered approach
 • Phase II study and beyond: refine immunogenicity assessment strategy based on evolved clinical data

• Case studies of immunogenicity monitoring plan in various clinical phases
 • Case study#1: Immunogenicity monitoring of a bispecific mAb in a Phase I study
 • Case Study#2: Updated immunogenicity assessment plan to align with the modified Phase III development plan

• Summary
• Acknowledgements
Immunogenicity Risk Assessment

How Likely Is an Antibody Response?

How Human is the Drug?
- Human
- Humanized
- Chimeric
- Mouse

Homology of Drug to Endogenous Counterpart
- High
- Partial
- Low

Dosing/Dose Regimen Plan
- Frequency: Single-Acute–Chronic–Intermittent
- How much Drug: Very High/High/Average/Low

Patient Immune Status (disease + concomitant medication)
- Suppressed
- Normal
- Activated

Impact of Drug on Immune System
- Immunosuppressant
- Immune Stimulator

Route of Administration of Drug
- Oral
- i.v.
- i.p.
- s.c.
- Inhaled

Clearance of Drug
- Fast
- Slow

Adapted from Koren et al 2008
Immunogenicity Risk Assessment

How Serious Could ADA Response Be?

<table>
<thead>
<tr>
<th>Less serious</th>
<th>More serious</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there an Endogenous Version of the Drug?</td>
<td></td>
</tr>
<tr>
<td>No - Yes</td>
<td></td>
</tr>
<tr>
<td>Endogenous Counterpart of Drug</td>
<td></td>
</tr>
<tr>
<td>Redundant – Unique</td>
<td></td>
</tr>
<tr>
<td>Homology of Drug to Endogenous Counterpart</td>
<td></td>
</tr>
<tr>
<td>Low – Partial - High</td>
<td></td>
</tr>
<tr>
<td>Consequence of Cross blocking ADA Would Be?</td>
<td></td>
</tr>
<tr>
<td>Tolerizeable – Manageable – Fatal</td>
<td></td>
</tr>
<tr>
<td>Can you dose over ADA?</td>
<td></td>
</tr>
<tr>
<td>No MTD – Low MTD</td>
<td></td>
</tr>
<tr>
<td>Disease Treated</td>
<td></td>
</tr>
<tr>
<td>Life Threatening – Non Life Threatening</td>
<td></td>
</tr>
<tr>
<td>Other Options</td>
<td></td>
</tr>
<tr>
<td>Alternate treatment available – Only Therapy</td>
<td></td>
</tr>
<tr>
<td>Can Crosslinking ADA Alter the Impact of Drug?</td>
<td></td>
</tr>
<tr>
<td>No – Yes (Reverses Antagonist/Blocking to Activating)</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Koren et al 2008
Immunogenicity: Consequences

Clinical Sequelae

- Binding ADA
- PK-altering ADA
- Neutralizing ADA
- Allergic ADA
- Cross-reactive neutralizing ADA
Interpreting Immunogenicity Data in Context

<table>
<thead>
<tr>
<th>Status</th>
<th>ADA</th>
<th>PK/PD</th>
<th>Safety</th>
<th>Efficacy</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal</td>
<td>Yes /No*</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>ADA not detected*, no apparent safety & efficacy concerns with respect to immunogenicity</td>
</tr>
<tr>
<td>Acceptable</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>ADA present but minimal effect on PK/PD No clinically significant S or E concerns regarding immunogenicity</td>
</tr>
<tr>
<td>Tolerable [Benefit > Risk]</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>ADA present and has effect on PK/PD No efficacy impact or impact can be managed with dose adjustments or changes in frequency Safety concerns regarding immunogenicity are none or minimal & can be managed with premedication or symptomatic treatment</td>
</tr>
<tr>
<td>No Go [Risk > Benefit]</td>
<td>Yes</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>ADA present and confers limits on efficacy ADA present and confers limits on safety</td>
</tr>
</tbody>
</table>

* Assay method could be questioned if no ADA responses detected
Using A Tiered Approach for Immunogenicity Assessment

Clinical serum samples

Screening Assay

- +

Confirmatory Assay

- +

Characterization of immunoreactivity
 • Titering
 • Neutralizing antibody
 • Other

Data report

For a typical antibody program in Phase I, II, III

For a typical antibody program in Phase III and beyond
Key References

• Healthy Authority Guidance
 • FDA Guidance for Industry: Immunogenicity Assessment for Therapeutic Protein Products (2014)
 • FDA Draft Guidance for Industry: Assay Development and Validation for Immunogenicity Testing of Therapeutic Protein Product (2016)
 • EMA Guidance on Immunogenicity Assessment of Therapeutic Proteins (2017)

• Industrial whitepapers and papers
Case Study#1

Monitoring immunogenicity of a bispecific monoclonal antibody anti-A/B in a Phase I study
More Rigorous Immunogenicity Monitoring Plan In The Phase I Study

Risk Based Assessment: medium
- Risk Factors: new modality; chronic treatments; SC dosing; targeting autoimmune diseases

Analytical strategy
- Assay format: bridging ELISA
- Screen, titer, confirm, characterization (domain mapping)

High immunogenicity observed in the repeated-dose cynomolgus monkey toxicology study
- ADAs detected in 97% (31 of 32) anti-A/B treated cynos
- ADA responses were predominantly towards the anti-B Fab
- High ADA signals correlate with loss of PK and PD
- Safety findings observed in some cynos with high ADA signals
 - consistent with ADA-related effects and not direct toxicological effects of anti-A/B

Include multiple interim analysis for closely monitoring immunogenicity in the Phase I study
- Immunogenicity in cyno monkeys generally not considered predictive of clinical incidence
- Combination of high incidence (97%) and high responses (1.54-6.96) was unexpected
- Limited clinical experience with bispecific mAbs
Case Study#2

Updated immunogenicity assessment strategy to align with the modified Phase III development plan
Modified Immunogenicity Assessment Strategy To Align with The Updated Phase III Development Plan

Drug: anti-X, a humanized mAb

Overall low ADA incidences (<6.3%) observed in the complete Phase I & II studies
• No obvious evidence of ADA impact on drug exposure, efficacy and safety

Original analytical strategy to support Phase III study
• Assay format - bridging ELISA
• Tiered approach - screen, titer, confirm
• Characterization - neutralizing antibody (NAb) analysis

Additional analytical work implemented to support the modified Phase III development plan
• Identification of a host cell protein (HCP) in drug materials triggered a modification of Phase III study
 • Tiered approach to monitor antibodies to HCP besides ADAs
• Applied in-study CPF instead of validation CPF for data analysis
Monitoring Both Antibodies to HCP and Drug in The Modified Phase III Studies

• Anti-X is produced in Chinese Hamster Ovary (CHO) cells. A process-related CHO derived protein impurity has been identified as CHO phospholipase B-like 2 (PLBL2) protein.

• High levels of PLBL2 (34-328ng/mL) detected in clinical materials used in the completed phase II studies.

• Anti-PLBL2 antibody was measured in the Phase II studies and high incidences (up to 98%) were observed, with no clinical sequelae.

• Process improvement was made to reduce PLBL2 levels in the Phase III materials (0.2-0.4ng/mL)

• Immunogenicity assessment strategy in Phase III studies was modified
 • Antibodies to anti-X and PLBL2 protein were monitored
Immunogenicity Results in Phase II & III Studies

<table>
<thead>
<tr>
<th>Study Phase</th>
<th>PLBL2 levels in drug materials (ng/mg)</th>
<th>Anti-X Dose (mg/dose, Q4W)</th>
<th>Total PLBL2 exposure (ug/dose)</th>
<th>Anti-PLBL2 antibody incidence</th>
<th>ADA incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIa</td>
<td>34-137</td>
<td>250</td>
<td>8.5-34.3</td>
<td>98%</td>
<td>2%</td>
</tr>
<tr>
<td>IIa</td>
<td>34-137</td>
<td>125 250 500</td>
<td>4.3-17.1 8.5-34.3 17.0-68.5</td>
<td>90%</td>
<td>1%</td>
</tr>
<tr>
<td>IIb</td>
<td>242-328</td>
<td>37.5 125 250</td>
<td>9.1-12.3 30.3-41.0 60.5-82.0</td>
<td>74%</td>
<td>6%</td>
</tr>
<tr>
<td>III</td>
<td>0.2-0.4</td>
<td>37.5 125</td>
<td>0.0075-0.015 0.025-0.05</td>
<td>18%</td>
<td>14%</td>
</tr>
</tbody>
</table>

- Lack of correlation between ADA and anti-PLBL2 antibody responses
- Decreased PLBL2 exposure led to significantly decreased anti-PLBL2 Ab positive incidence in the Phase III study
Guidance for NAb Assay Format Selection

- USP 1106.1
- White paper by AAPS
NAb Results Of Phase III Studies

• **Assay format**
 - Competitive ligand binding ELISA, using drug for capture and target conjugate for detection
 - Used study baseline samples for cutpoint determination

• **Phase III NAb results**
 - NAbs detected in 13 of 2052 anti-X treated subjects
 - all treatment-induced NAbs
 - NAb positive patients also had higher ADA responses

• Presence of NAbs had no apparent impact on safety

• Patients with higher NAb signals appeared to have lower drug exposure as well as lower than expected efficacy
Clinical impact of ADAs and anti-PLBL2 Antibodies

- No apparent safety signals attributed to presence of ADAs (NAbS) and higher levels of anti-PLBL2 antibodies.
- No apparent impact on the average or distribution of drug exposure and pharmacodynamics responses
 - Except for patients with higher NAb responses
- No consistent trends to suggest impact of positive ADAs and anti-PLBL2 antibodies on overall trial efficacy
 - Except impact on efficacy in patients with higher NAb responses
Summary

- Immunogenicity assessment is an integral part of drug development, and it is a key element of product safety and quality.

- Prediction of immunogenicity of biotherapeutics is challenging and must be assessed in the representative population for every indication being considered.

- Fit for purpose methods and “tiered” strategies are used to assess immunogenicity. These strategies are often modified or evolved based on various considerations including:
 - new modalities, changed CDP
 - evolved strategy by incorporating clinical data

- Immunogenicity data must be assessed in the context of other clinical readouts PK, PD, safety, & efficacy.
Acknowledgements

Ketevan Siradze
Catherine Huang
Melissa Cheu
Ben Ordonia
Robert Hendricks
Van Nguyen
Lynn Kamen
Shan Chung
Wendy Putnam
Julie Olsson
Sarah Gray
Viyia Sverkos
Keshwin Sharma
Grace Fasano
Shweta Vadhavkar

Sally Fischer
Patty Siguenza