PK SCIENCES Clinical Bioanalytics and Regulatory Science

Acceptance range of titer positive control in clinical ADA assays: practical examples

Lydia Michaut and Denise Sickert

11^h EBF Open Symposium "Raise the Anchor – Set Sail for Science" Session "Immunogenicity 2" Friday, November 23rd, 2018

U NOVARTIS

Agenda

1. Establishment of the titer range

- \circ MSD Example
- FACS Example -> in backup section
- 2. Adaptation of the titer range -> Critical reagents
 - o ELISA Example
 - \circ FACS Example

3. Discussion:

- Pivotal for gene therapy (and all molecules with pre-existing antibodies) projects
- $\,\circ\,$ Can titer assays be avoided?

Topic relevance

Many «classical» biologics (*e.g.* humanized/fully human monoclonal Abs, immune suppressants) are lowly immunogenic / have a low immunogenicity

=>ADA assessments do not require an extensive titration step New entities (*e.g* nanobodies, replacement proteins, gene therapies) have a highest humoral immunogenicity potential sometimes including the presence of pre-existing antibodies => «revival» in the need / interest

for titer assays

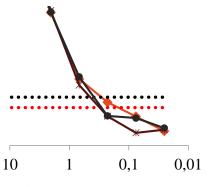
U NOVARTIS

Establishment of PC titer ranges

Titer was defined as the reciprocal dilution calculated with the intercept method

• intercept of the linear regression of the two titration points which produce assay signals directly above and below the TCP, with the TCP

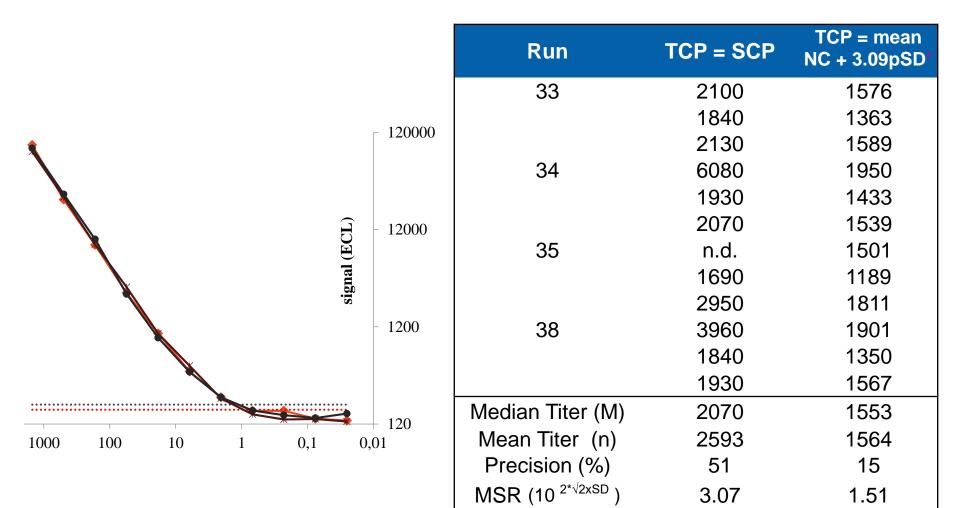
precision of titer values:

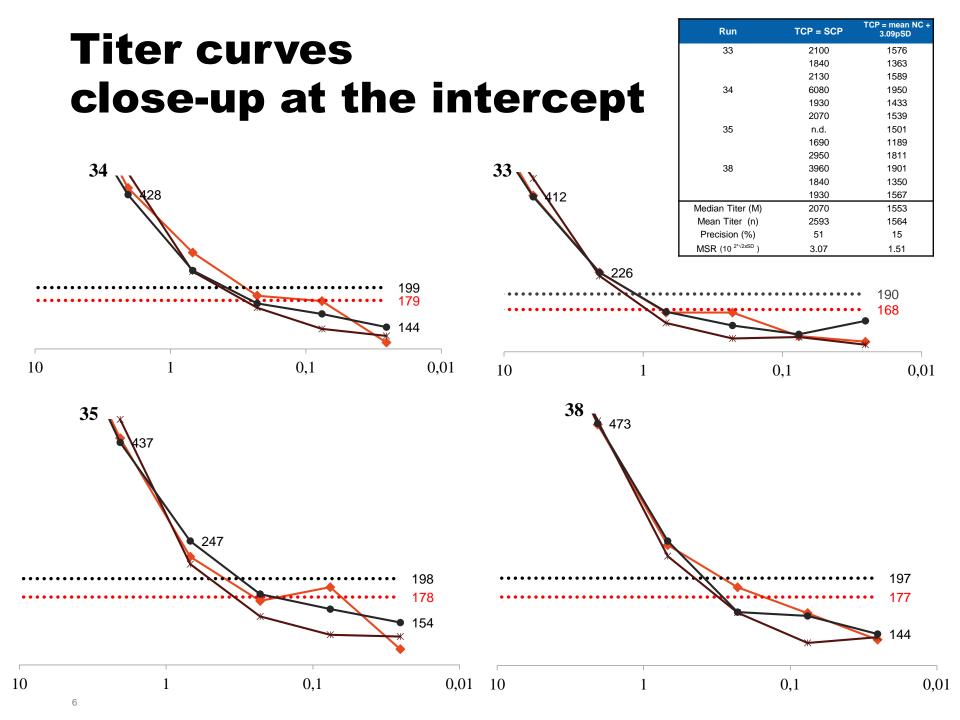

• Minimum Significant Ratio MSR = $10^{2*\sqrt{2}*SD}$

 Inter-run coefficient of variation

Titer Positive Control acceptance ranges were calculated:

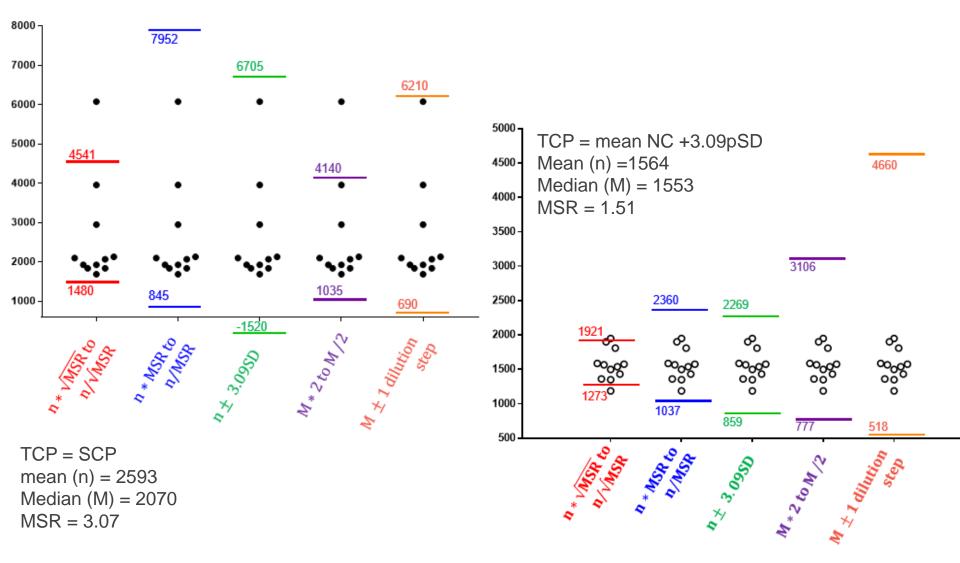
 From titer data from validation


 with different methods to investigate the impact on titer range calculation


n: mean of the titer values M: Median of titer values

n * \sqrt{MSR} to **n**/ \sqrt{MSR} n * MSR to n/MSR $n \pm 3.09SD$ M * 2 to M /2 M \pm 1 dilution step

Example 1: MSD ADA assay Influence of the titer cut point


* Wakshull et al., (2011) Proposal for a new protein therapeutic immunogenicity titer assay cutpoint

Minimal difference in CP values, maximal impact on titer precision

Run	TCP = SCP	TCP = mean NC + 3.09pSD	I	
33	2100	1576	6000 -	
	1840	1363		
	2130	1589	5000	
34	6080	1950		
	1930	1433		
	2070	1539	4000 -	
35	n.d.	1501		
	1690	1189	3000	
	2950	1811		
38	3960	1901		(
	1840	1350	2000	
	1930	1567		
Median Titer (M)	2070	1553	1000 -	
Mean Titer (n)	2593	1564		
Precision (%)	51	15		ТСР
MSR (10 ^{2*√2xSD})	3.07	1.51		

Graphical representation of the various acceptance ranges

Just a question

Acceptance criteria for titer assays by using the range of titrated positive control must be carefully designed during assay validation, e.g. assessed on different days, at least 12 titer curves, 2 analysts

-> But is this even enough?

Assay validation also occurs during sample analysis -> inclusion of the results of the SSCs obtained during the first clinical studies to refine the threshold?

Conclusion

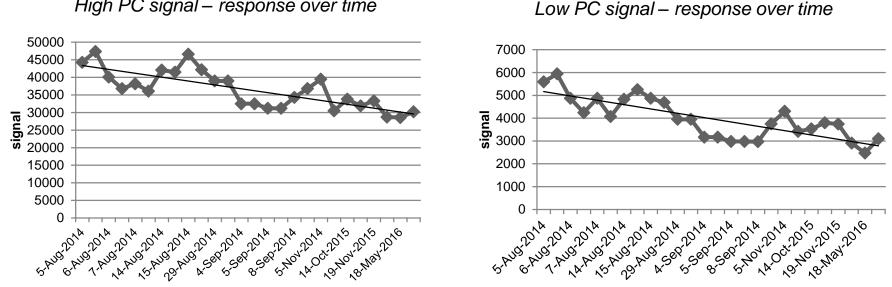
- The titer assay needs to be well controlled to ensure that titer data are comparable between samples within a study but also between studies of a certain biotherapeutic project
- The decision about TPC range method should be based on the needed precision during study sample measurement and depends on:
 - ADA incidence,
 - correlation of titer results with clinical outcome & safety,
 - frequency of pre-existing ADAs...
- -> Information ultimately ends up in the drug label

Part II

Adaptation of the titer range -> Critical reagents

- ELISA Example
- FACS Example

Adaption of titer range: ELISA


- Assay transfer: use of new reagent lot of ADP (Anti-Dig-POD Fab fragment)
- Validated TPC range : 26.5 59.6

		1:10000		0			1:5000			1:7500	
		OD	DF	3. ——			00	DF		OD	DF
ADP dilution used during validation TPC0 TPC0 TPC0 TPC0 TPC0 TPC0 TPC0 TPC0	TPC01	0.277	1.00	ADP was	TPC:	TPC01	0.298	1.00	TPC01	0.292	1.
	TPC02	0.202	0.202 1.50			TPC02	0.209	1.50	TPC02	0.204	1.
	TPC03	0.146			TPC03	0.155	2.25	TPC03	0.154	2.3	
	TPC04	0.110	3.38	-		TPC04	0.118	3.38	TPC04	0.115	3.3
	TPC05	0.088	5.06			TPC05	0.091	5.06	TPC05	0.092	5.0
	TPC06	0.073	7.59			TPC06	0.077	7.59	TPC06	0.077	7.5
	TPC07	0.063	11.39			TPC07	0.067	11.39	TPC07	0.065	11.3
	TPC08	0.056	17.03			TPC08	0.062	17.09	TPC08	0.062	17.0
	TPC09	0.056	25.63			TPC03	0.056	25.63	TPC09	0.054	25.6
	TPC10	0.049	38.44			TPC10	0.053	38.44	TPC10	0.050	
	TPC11	0.054	57.67			TPC11	0.050	57.67	TPC11	0.048	
	TPC12	0.046	86.50			TPC12	0.049	86.50	TPC12	0.047	86.5
	TPC13	0.047	129.75			TPC13	0.0488	129.75	TPC13	0.046	129.7
2.				4.						-	1
	<u>y</u>	X	log x			y	X	log x	y	x	log x
After	0.054	57.665	1.7603	TPC range		0.053	38.443 57.665	1.5848	0.050	38.443 57.665	
	0.046	86.438	1.937	U U		0.050	51.005	1.7003	0.040	51.005	1.700
change of				was met			dene	0.0140		dene	0.000
ADP lot		slope	-0.0491	again & new			slope	-0.0142		slope	-0.008
		intercept	0.1408	•			intercept	0.0754		intercept	0.063
TPC range				ADP dilution							
was no	CP	0.048		was used in		CP	0.051		CP	0.048	
more met	Titer	78.921		the assay		Titer	49.959		Titer	55,776	

- \Rightarrow assay signals could be maintained by changing the concentration of the detection antibody
- \Rightarrow No need to adjust TPC acceptance range

Adaption of titer ranges: FACS assay

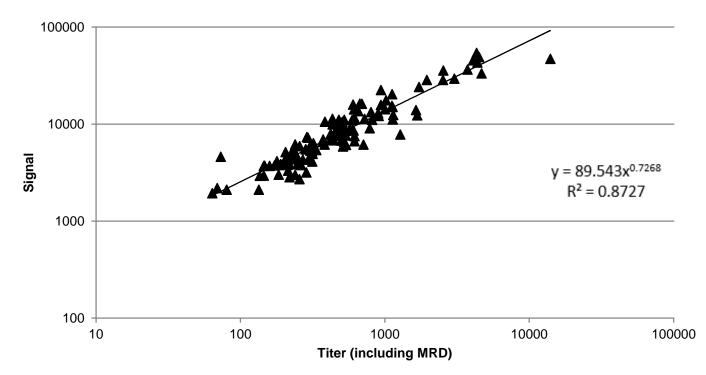
- Positive control antibody (stored in refrigerator)
- Trending demonstrated that degradation occured within two years => Lower signals -> Lower titers of TPC

High PC signal – response over time

- Validated TPC range: 640 1280, Median titer: 1180
- If using validated TPC range, 16 out of 25 titer plates would have failed because TPC was below 640.
- NC signal trending (not showed here) demonstrating that signal was unchanged, hence demonstrating the stability of the assay itself.
- => In this case TPC range might be adjusted, because the assay itself was stable.
- Further storage of positve control antibody in Freezer

Discussion 1 Relevance for gene therapy projects

Titration assays are becoming of increased importance in the evaluation of the ADA response for instance for compounds for which pre-existing antibodies against the therapeutic agent can be detected in up to 100% of the pre-dose samples (*e.g.* gene therapy compounds).


This makes the screening and confirmatory steps (almost) optional: the humoral immunogenicity assessment relies on the variation of the titers within an individual rather than on the positive or negative status of the individual samples.

Therefore, sample analysis titer controls are of paramount importance to:

- ensure the relevance of the titer variations observed between two time points collected from the same individual.
- determine if a titer variation is relevant or not (i.e boosted by the compound administration or within the normal assay variability range)
- -> Information on the drug label

Discussion 2: Correlation between signals and titer

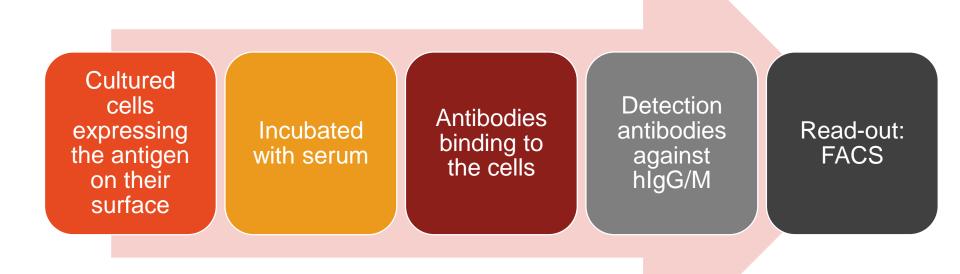
Assay with broad working range => correlation between titer values and assay signal

- \Rightarrow Assessment of magnitude of ADA response with assay signals
- \Rightarrow Sample titration would become unnecessary
- \Rightarrow Prerequisite: drug tolerant and precise assay

Starcevic Manning et al., (2017) Assay signal as an alternative to titer for assessment of magnitude of an antidrug antibody response

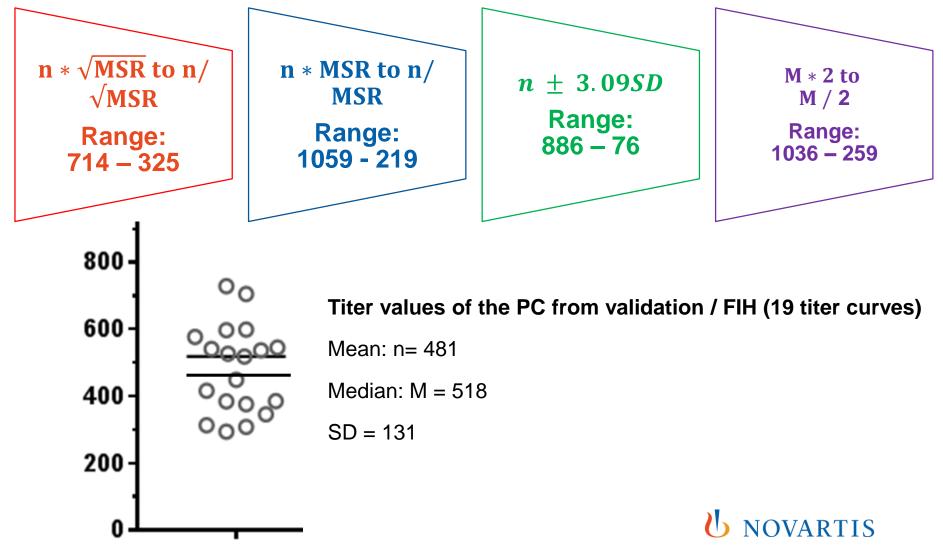
Julien Couturier Bernd Potthoff Franck Picard

Thank you

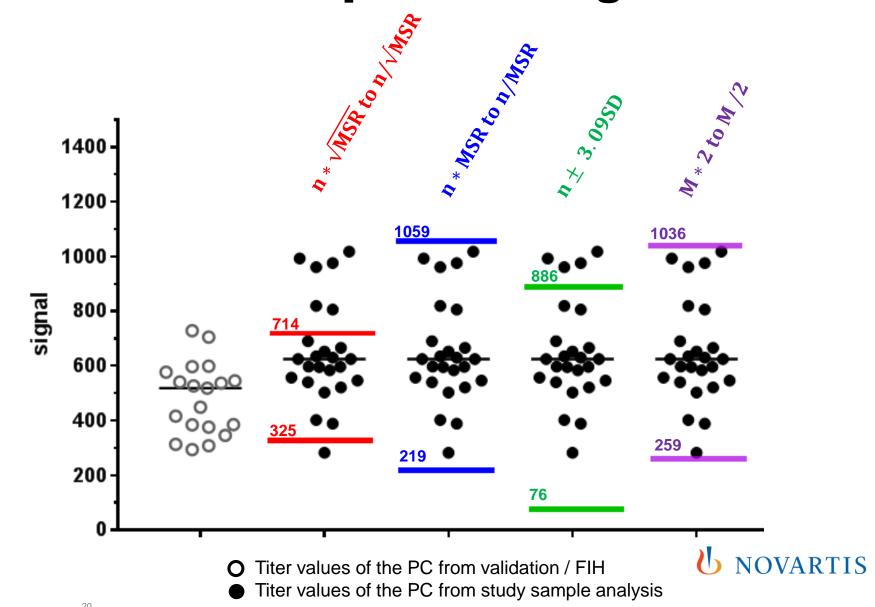


Backup slides

Establishment of the tier range: example 2



Example 2: Cell-based ADA assay



U NOVARTIS

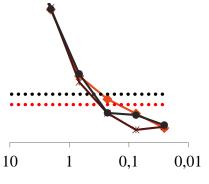
The various acceptance ranges for the titer PC

Graphical representation of the various acceptance ranges

Example 1, enlarged graphs

Establishment of PC titer ranges

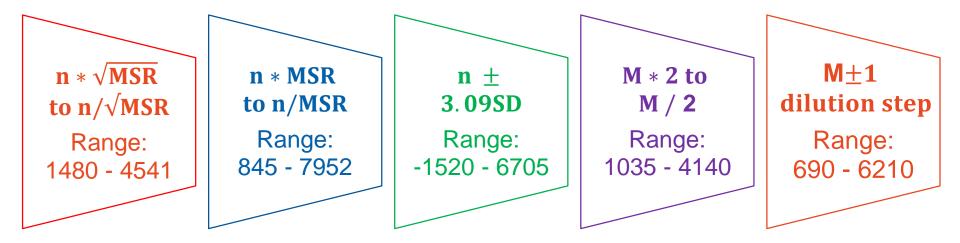
Titer was defined as the reciprocal dilution calculated with the intercept method

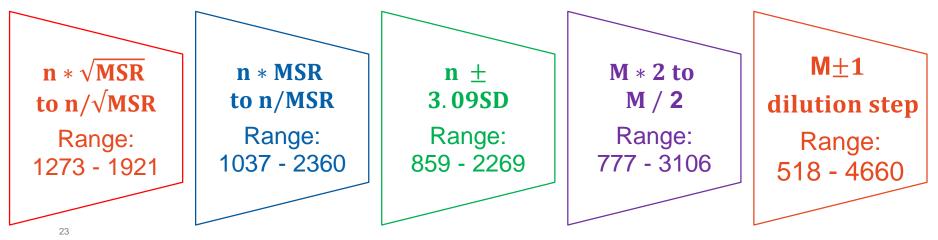

 intercept of the linear regression of the two titration points which produce assay signals directly above and below the TCP, with the TCP
TCP setup Minimum Significant Ratio (MSR) used to express precision of titer values

 $MSR = 10^{2*\sqrt{2}*SD}$

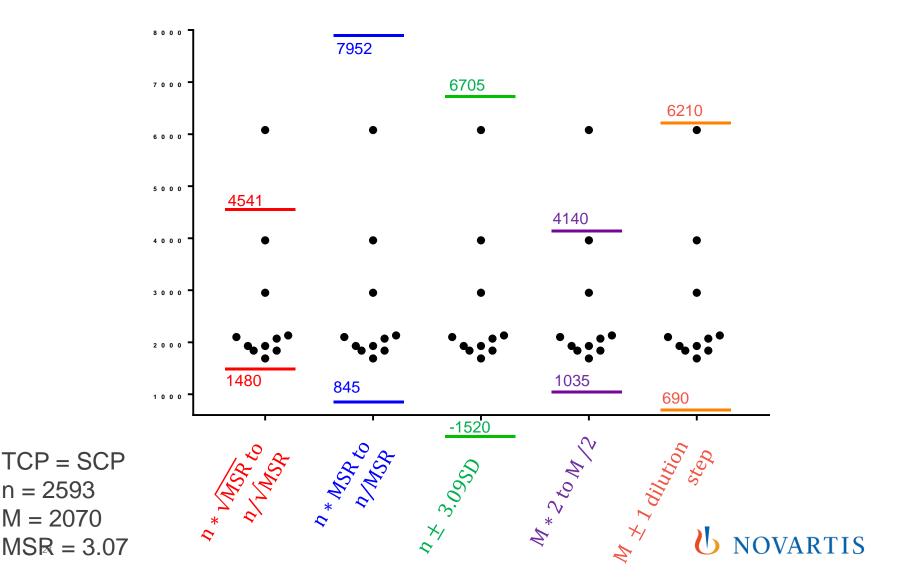
- log transformed intraassay and inter-assay titer
- NB. base 10 was used in the log transformation of titer results

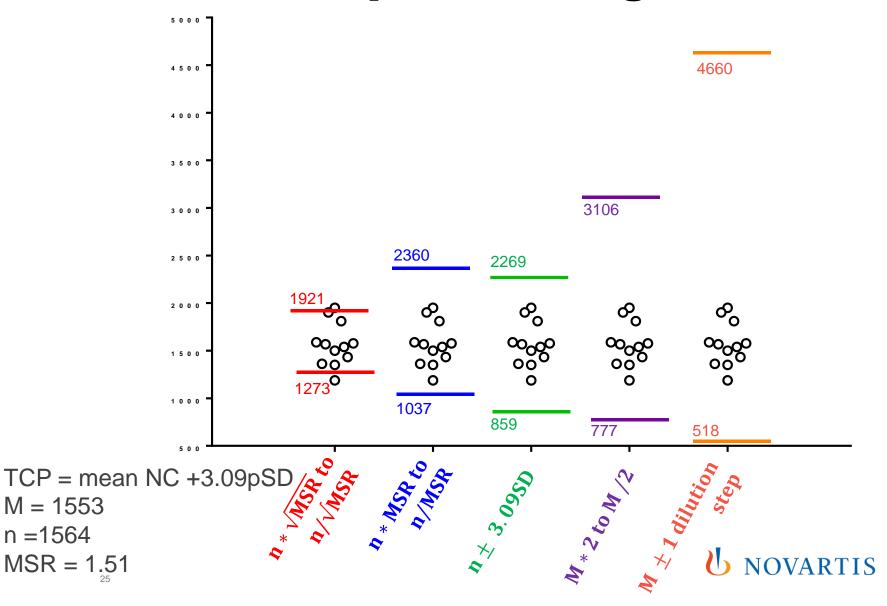
Titer Positive Control acceptance ranges were calculated:


- with titer data from validation
- with different methods to investigate the impact on titer range calculation


n: mean of the titer values M: Median of titer values n * \sqrt{MSR} to n/ \sqrt{MSR} n * MSR to n/MSR n ± 3.09SD M * 2 to M /2 M ± 1 dilution step

The various acceptance ranges for the titer PC


 $\mathbf{TCP} = \mathbf{SCP}$


TCP = mean NC+3.09pSD

Graphical representation of the various acceptance ranges

Graphical representation of the various acceptance ranges

